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Abstract
Generating an abstraction of a dynamic domain that
aligns with a given purpose remains a significant
challenge given that the choice of such an abstrac-
tion can impact an agent’s ability to plan, reason,
and provide explanations effectively. We model
the agent’s concrete behaviors in PDDL and in-
vestigate the use of in-context learning with large
language models (LLMs) for the generation of ab-
stract PDDL domains and problem instances, given
an abstraction objective specified in natural lan-
guage. The benchmark examples we use are new
and have not been part of the data any LLMs have
been trained on. We consider three categories of ab-
stractions: abstraction of choice of alternative con-
crete actions, abstraction of sequences of concrete
actions, and abstraction of action/predicate param-
eters, as well as combinations of these. The gener-
ated abstract PDDL domains and problem instances
are then checked by symbolic validation tools as
well as human experts. Our experiments show that
GPT-4o can generally synthesize useful planning
domain abstractions in simple settings, although
they are better at abstracting over actions than over
the associated fluents.

1 Introduction
The ability to generate abstractions that ignore irrelevant de-
tails is a crucial human cognitive ability that supports rea-
soning and communication. This has inspired significant re-
search in AI, where for instance, abstraction has been ex-
ploited to improve the efficiency of planning (e.g., [Chen
and Bercher, 2021]), provide explanations of agents’ behavior
(e.g., [Seegebarth et al., 2012]), and in reinforcement learn-
ing (e.g., [Sutton et al., 1999]).

[Banihashemi et al., 2017; Banihashemi et al., 2024]
(BDL17) developed a general framework for agent abstrac-
tion in dynamic domains which is based on the situation cal-
culus [McCarthy and Hayes, 1969; Reiter, 2001] and the
ConGolog agent programming language [De Giacomo et al.,
2000]. The account formalizes notions of sound/complete ab-
stractions between a high-level (HL) action theory and a low-
level (LL) action theory representing the agent’s possible be-

haviors at different levels of detail. These notions are based
on the existence of a bisimulation relation between their re-
spective models relative to a refinement mapping that maps
high-level fluents to low-level state formulas and high-level
actions to ConGolog programs over the low-level theory that
implement them. It is shown that sound/complete abstrac-
tions have many useful properties that allow one to reason at
the high level and refine the results at the low level, and they
can also be used for monitoring and explanation. There is
also related work on hierarchical planning, for instance, hier-
archical task network (HTN) planning [Erol et al., 1996] and
planning with domain-specific control knowledge specified in
linear temporal logic (LTL) [Bacchus and Kabanza, 2000].

(BDL17) specifies under what conditions a high-level ac-
tion theory is a sound/complete abstraction of a low-level
one under a given refinement mapping, but it does not say
how one obtains such an abstraction. In general, there would
be several different abstractions of a domain, each of which
serves a particular purpose and could be used in a different
application. Generating an abstraction of a domain that aligns
with a given purpose remains a significant challenge. So far,
there has only been limited work on solvers that can synthe-
size abstractions for a given mapping and verify their sound-
ness and/or completeness (e.g., [Luo et al., 2020; Luo, 2023;
Fang et al., 2025; Dong et al., 2025]). But relying on human
experts to generate such abstractions by hand is costly, time
consuming, and does not scale.

Much recent work has investigated the use of large lan-
guage models (LLMs) [Zhao et al., 2023] for reasoning about
action and the generation of planning specifications. While
some work shows limitations of LLMs for reasoning about
actions and planning (e.g., [Valmeekam et al., 2024; He et al.,
2023]), other work shows good potential for the generation
of Planning Domain Definition Language (PDDL) [McDer-
mott et al., 1998] specifications (e.g., [Oswald et al., 2024;
Guan et al., 2023]).

It is clear that LLMs embed comprehensive world knowl-
edge and that they can generate PDDL specifications. Thus
it seems reasonable that they could be very helpful in gener-
ating useful abstractions of planning domains and problems
and encode them in a formal language such as PDDL [Fox
and Long, 2011].

In this paper, we investigate the ability of GPT-4o [Hurst et
al., 2024] to generate such abstractions. We define the Plan-



ning Domain Abstraction Generation (PDAG) task as: given
(1) a concrete planning domain in PDDL (2) a concrete plan-
ning problem instance in PDDL, (3) a brief natural language
description of the domain, and (4) a purpose of abstraction in
natural language, use in-context learning with LLMs to gen-
erate (a) an abstract planning domain in PDDL and (b) an
abstract planning problem instance in PDDL that meet the
purpose of abstraction.

We consider three basic categories of abstractions: (1) ab-
straction of alternative concrete actions, e.g. book hotel and
book airbnb could be abstracted to book accommodation,
(2) abstraction of sequences of concrete actions, e.g., the se-
quence enter username and enter password could be ab-
stracted to login, and (3) abstraction of action/predicate pa-
rameters, e.g., abstracting over the room view parameter of
book room and dropping associated fluents, types, and ac-
tions. We also examine a fourth category which is a combina-
tion of (1) and (2), i.e., abstraction of alternative sequences of
concrete actions. We have developed a number of benchmark
examples for the PDAG task for each of these categories. We
ran experiments to evaluate the capability of GPT-4o to solve
the PDAG task for these benchmarks, which are new and have
not been seen by the LLM before. We use zero-shot and
one-shot prompting [Brown et al., 2020; Dong et al., 2024;
Li, 2023], augmented with chain-of-thought reasoning [Wei
et al., 2022] and role-play [Kong et al., 2024]. To evaluate
the generated abstract planning domains and problems, we
use the plan validator tool VAL [Howey et al., 2004], in ad-
dition to evaluation by human experts. We also use the Fast
Downward planner [Helmert, 2006] to generate plans and de-
tect errors. The PDAG task and our benchmarks for it are
inspired by the (BDL17) framework, but we do not require
the LLM to generate the refinement mapping. Nor do we
formally verify that the abstract PDDL domain and problem
returned by the LLM is a solution to the PDAG task. We leave
these topics for future work.

Our experiments show that GPT-4o can generate almost
error-free results for abstraction of action/predicate param-
eters, but that it makes more mistakes as the difficulty of
abstraction increases with abstraction of alternative concrete
actions, abstraction of sequences of concrete actions, and ab-
straction of alternative sequences of concrete actions.

2 Background
Planning Domain Definition Language (PDDL) [McDer-
mott et al., 1998] is a widely used language for representing
classical planning [Ghallab et al., 2004] problems. In this
paper, we use the STRIPS fragment of PDDL with typing.
PDDL separates the definition of a planning problem into two
parts: the domain definition and a problem definition. The
domain definition provides a lifted representation of the rele-
vant aspects and underlying rules of the world, and includes
types, predicates and actions. The problem definition models
a particular problem instance in the domain which specifies
the initial state, goal condition, and the object names.

In-Context Learning refers to the ability of LLMs to gen-
eralize to novel tasks by interpreting examples or task de-
scriptions provided within the input prompt, without requir-

ing explicit task-specific training or parameter fine-tuning
[Brown et al., 2020; Dong et al., 2024; Li, 2023]. In one-shot
learning, the LLM is provided with a single task demonstra-
tion, along with a natural language description of the task.
The example task is given together with its desired comple-
tion, and then a final task instance, i.e, user query, is provided
to the LLM, and the LLM is expected to generate the com-
pletion for it. Zero-shot learning is similar to one-shot learn-
ing, except that no task demonstrations are provided. Here,
we use zero-shot and one-shot prompts that are augmented
with chain-of-thought (CoT) [Wei et al., 2022] and role-play
[Kong et al., 2024] prompting techniques. CoT facilitates
step-by-step reasoning by encouraging the model to generate
intermediate reasoning steps before arriving at a final answer,
thereby improving performance on commonsense and sym-
bolic reasoning tasks. Role-Play prompting enhances task
understanding by guiding the model to assume specific per-
sonas, which helps contextualize responses more effectively.

3 Planning Domain Abstraction Generation
We define the Planning Domain Abstraction Generation
(PDAG) task as follows: given (1) a concrete planning do-
main in PDDL Dc, (2) a concrete planning problem instance
in PDDL Pc, (3) a brief natural language description of the
domain ddc, and (4) a purpose of abstraction in natural lan-
guage pa, use in-context learning with LLMs to generate (a)
an abstract planning domain in PDDL Da and (b) an abstract
planning problem instance in PDDL Pa that meet the purpose
of abstraction.

We can formalize the PDAG task based on the notion of
sound and complete abstraction of situation calculus basic
action theories (BATs) relative to a refinement mapping m
of (BDL17). For this, the purpose of abstraction must be ex-
pressed as a set of constraints Cm on the refinement map-
ping m (these constraints restrict which fluents and actions
may be included in the abstract theory and how they can be
mapped to the concrete theory; see the next section for an ex-
ample). First, note that for any domain D and problem P in
the ADL [Pednault, 1989] fragment of PDDL, we can obtain
an equivalent BAT t(D,P ) = D as shown in [Claßen et al.,
2007]. Note that this BAT must have a finite object domain
and that the initial situation description must be complete,
i.e., it completely specifies which tuples of objects are in the
extension of every fluent initially. Using this, we say that an
abstract PDDL domain Da and problem Pa is a solution to the
PDAG task (Dc, Pc, Cm), where we have the concrete PDDL
domain Dc and problem Pc and constraints on the mapping
Cm, if there exists a refinement mapping m such that m satis-
fies Cm and t(Da, Pa) is a sound and complete abstraction of
t(Dc, Pc) relative to m. [Banihashemi et al., 2024] identifies
a set of necessary and sufficient properties for an abstract BAT
Da to be a sound and complete abstraction of a concrete BAT
Dc relative to mapping m. Since the action theories involved
have a finite object domain and a complete initial state spec-
ification, given a mapping m, it should be possible to check
if these properties are satisfied using model checking tech-
niques. But this requires identifying a suitable mapping m
and one also must show that m satisfies the constraints Cm.



4 Abstraction of PDDL Domains and
Benchmark Problems

In our experiments, we use a collection of new examples that
we have developed and hence, have not been part of the train-
ing data of GPT-4o. Each example includes 4 components:
a low-level PDDL domain specification, a low-level PDDL
problem instance, a brief natural language description of the
domain, and a brief natural language description of purpose
of abstraction. We consider the following categories of ab-
straction tasks: abstraction of alternative concrete actions, ab-
straction of a sequence of concrete actions, abstraction of ac-
tion/predicate parameters, and a combination of the first two,
i.e., abstraction of alternative sequences of concrete actions.
Abstraction of Alternative Concrete Actions. In scenar-
ios where the low-level domain offers multiple alternative ac-
tions to achieve a subgoal, such actions can be abstracted into
a single high-level action. This is typically accompanied by
the abstraction of associated predicates and types. Note that
depending on the purpose of abstraction, the concrete do-
main, and the planning goal, some types, predicates, or ac-
tions may not need to be abstracted.
Example 1. Consider the following low-level domain
which models travel arrangements. In order to go to the des-
tination, one may book a flight or train, if a seat is available,
and also book a hotel or airbnb, if a room is available.
( de f ine ( domain t rave lAr range01 LL )
( : requirements : s t r i p s : t yp ing )
( : types

ho te l a i rbnb room f l i g h t t r a i n R i d e seat − ob jec t )
( : p red ica tes

( booked hote l ? r −room ?h − ho te l )
( booked airbnb ? r − room ?ab − ai rbnb )
( ava i l ab l e room ho te l ? r − room ?h − ho te l )
( ava i l ab le room a i rbnb ? r − room ?ab − ai rbnb )
( bookedHotelOrAirbnb )
( a v a i l a b l e s e a t f l i g h t ?s − seat ? f − f l i g h t )
( a v a i l a b l e s e a t t r a i n R i d e ?s −seat ? t − t r a i n R i d e )
( b o o k e d f l i g h t ?s − seat ? f − f l i g h t )
( booked t ra inRide ?s − seat ? t − t r a i n R i d e )
( bookedFl ightOrTra inRide ) )

( : ac t i on book hote l
: parameters (?h − ho te l ? r − room )
: p recond i t i on ( ava i l ab l e room ho te l ? r ?h )
: e f f e c t ( and ( booked hote l ? r ?h )

( not ( ava i l ab l e room ho te l ? r ?h ) )
( bookedHotelOrAirbnb ) ) )

( : ac t i on book airbnb
: parameters (?ab − a i rbnb ? r − room )
: p recond i t i on ( ava i l ab le room a i rbnb ? r ?ab )
: e f f e c t ( and ( booked airbnb ? r ?ab )

( not ( ava i l ab le room a i rbnb ? r ?ab ) )
( bookedHotelOrAirbnb ) ) )

( : ac t i on b o o k f l i g h t
: parameters (? f − f l i g h t ?s − seat )
: p recond i t i on ( a v a i l a b l e s e a t f l i g h t ?s ? f )
: e f f e c t ( and ( b o o k e d f l i g h t ?s ? f )

( not ( a v a i l a b l e s e a t f l i g h t ?s ? f ) )
( bookedFl ightOrTra inRide ) ) )

( : ac t i on book t ra inR ide
: parameters (? t − t r a i n R id e ?s − seat )
: p recond i t i on ( a v a i l a b l e s e a t t r a i n R i d e ?s ? t )
: e f f e c t ( and ( booked t ra inRide ?s ? t )

( not ( a v a i l a b l e s e a t t r a i n R i d e ?s ? t ) )
( bookedFl ightOrTra inRide ) ) ) )

The goal in the associated problem instance is defined as fol-
lows (see [Banihashemi et al., 2025] for the complete listings
of concrete and abstract domains and problem instances of
examples 1 to 4):

( : goal ( and ( bookedFl ightOrTra inRide )
( bookedHotelOrAirbnb ) )

The purpose of abstraction may be expressed in natural lan-
guage as “provide an abstraction of the concrete domain such
that the high-level domain abstracts over booking various
kinds of transportation and accommodation”. This purpose
of abstraction might be specified formally as a set of con-
straints on the mapping m, which should be entailed by the
concrete action theory Dc obtained from the concrete PDDL
domain and problem. For the booking of accommodation, we
could have:

∃r, h.bookedHotel(r, h, s) ∨ ∃r, ab.bookedAirbnb(r, ab, s)
⊃ m(doneBookingAccomodation)[s]

Do(m(bookAccomodation(a, r)), s, s′) ⊃
m(doneBookingAccomodation)[s′]

This says that booking a hotel or an airbnb is suffi-
cient to achieve the concrete condition into which
doneBookingAccomodation is mapped and that
executing the program into which the abstract ac-
tion bookAccomodation(a, r) is mapped achieves
doneBookingAccomodation (Do(δ, s, s′) means that
there is an execution of the program δ starting in situation
s and ending in situation s′). We could also have a con-
straint that ensures that there is no abstract action ah that
is mapped into the concrete action bookHotel(h, r), i.e.
m(ah(h, r)) = bookHotel(h, r), and thus this action cannot
appear at the abstract level, and similarly for bookAirbnb.
The constraints for the booking of transportation are similar.

In such a case, we would expect the LLM to generate the
following high-level domain:
( de f ine ( domain t ravelArrange01 HL )
( : requirements : s t r i p s : t yp ing )
( : types accommodation room t r a n s p o r t a t i o n seat
− ob jec t )

( : p red ica tes
( booked accommodation ? r − room ?a − accommodation )
( ava i lab le room ? r − room ?a − accommodation )
( doneBookingAccommodation )
( a v a i l a b l e s e a t ?s − seat ? tp − t r a n s p o r t a t i o n )
( booked t ranspor ta t i on ?s − seat ? tp − t r a n s p o r t a t i o n )
( doneBookingTransportat ion ) )

( : ac t i on book accommodation
: parameters (?a − accommodation ? r − room )
: p recond i t i on ( ava i lab le room ? r ?a )
: e f f e c t ( and ( booked accommodation ? r ?a )

( not ( ava i lab le room ? r ?a ) )
( doneBookingAccommodation ) ) )

( : ac t i on book t ranspo r t a t i on
: parameters (? tp − t r a n s p o r t a t i o n ?s − seat )
: p recond i t i on ( a v a i l a b l e s e a t ?s ? tp )
: e f f e c t ( and ( booked t ranspor ta t i on ?s ? tp )

( not ( a v a i l a b l e s e a t ?s ? tp ) )
( doneBookingTransportat ion ) ) ) )

In the above, the types hotel and airbnb have been ab-
stracted to type accommodation, actions book hotel and
book airbnb to abstract action book accommodation, and
predicates booked hotel and booked airbnb to high-level
predicate booked accommodation. The type room on the
other hand, has not been abstracted.

The problem instance is then abstracted by using the types,
predicates, and actions in the high-level domain. Objects also
need to be assigned to the abstract types when necessary. ■

This category includes 8 benchmark examples, with do-
mains modeling diverse scenarios such as apparel selection,



daily activities, household chores, and software development.
The number of actions defined within these domains ranges
from 3 to 6. The purpose of abstraction varies according to
the domain. For example, in SoftwareDev01, where the low-
level domain includes actions to resolve bugs off-by-one, op-
erator precedence, wrong indentation, and unmatched paren-
theses, the purpose of abstraction instructs the LLM to pro-
vide an abstraction such that the high-level domain abstracts
over resolving similar types of software program bugs, i.e.,
logical bugs and syntax bugs. In DailyPlan01 on the other
hand, where the concrete domain includes actions to read a
book, watch a tutorial, cycle, hike, order food, and cook, the
purpose of abstraction instructs the LLM to provide an ab-
straction such that the high-level domain abstracts over simi-
lar classes of daily activities.
Abstraction of Sequences of Concrete Actions. In this
category, sequences of two or more low-level actions are ab-
stracted to one high-level action. This typically also involves
abstraction of conjunction of several low-level predicates into
a single high-level predicate. As the previous category, some
predicates or actions need not be abstracted.
Example 2. Consider the following concrete domain which
models editing a file in an online editor hosted in a cloud.
A user needs to first enter a valid username and then a valid
matching password to login to his cloud account. Then he can
open the file in an editor provided the file is originally closed
and he has permission to edit it and after that, make changes
to the file content.
( de f ine ( domain cloudApps01 LL )
. . .
( : ac t i on enter UserName

: parameters (?u − userName )
: p recond i t i on ( val id userName ?u )
: e f f e c t ( authent icated userName ?u ) )

( : ac t i on enter passWord
: parameters (?u − userName ?p − passWord )
: p recond i t i on ( and ( val id passWord ?p )

( authenticUserPassword ?u ?p )
( authent icated userName ?u ) )

: e f f e c t ( authent icated passWord ?p ) )
( : ac t i on openF i l e InEd i t o r

: parameters (? f − f i l e ?p − passWord ?u − userName )
: p recond i t i on ( and ( c l o s e d f i l e ? f )

( hasEdi tPermiss ion ?u ? f )
( authent icated passWord ?p ) )

: e f f e c t ( and ( openedF i le InEd i to r ? f )
( not ( c l o s e d f i l e ? f ) ) ) )

( : ac t i on changeFileConent
: parameters (? f − f i l e )
: p recond i t i on ( openedF i le InEd i to r ? f )
: e f f e c t ( changedFi leContent ? f ) ) )

Now suppose that the purpose of abstraction states “pro-
vide an abstraction of the concrete domain such that the high-
level domain abstracts over detailed steps of logging in and
editing a file on cloud”. The following high-level domain sat-
isfies the purpose of abstraction:
( de f ine ( domain cloudApps01 HL )
. . .
( : ac t i on l o g i n

: parameters (?u − userName ?p − passWord )
: p recond i t i on ( v a l i d c r e d e n t i a l s ?u ?p )
: e f f e c t ( logged in ?u ?p ) )

( : ac t i on e d i t f i l e
: parameters (? f − f i l e ?p − passWord ?u − userName )
: p recond i t i on ( and ( c l o s e d f i l e ? f )

( hasEdi tPermiss ion ?u ? f )

( logged in ?u ?p ) )
: e f f e c t ( and ( e d i t e d f i l e ? f )

( not ( c l o s e d f i l e ? f ) ) ) ) )

Here, the sequence of actions enter userName and
enter passWord is abstracted to login, and the
predicate logged in (which abstracts over the con-
junction of predicates authenticated userName and
authenticated passWord) is a precondition for the abstract
action edit file. Predicates hasEditPermission and
closed file are retained in the abstract domain. The problem
instance is then abstracted by using the types, predicates, and
actions in the high-level domain. ■

This category includes 11 examples, with domains model-
ing scenarios such as car manufacturing, cooking, painting,
order delivery, laptop purchase, and rescue robot. The num-
ber of actions defined in these domains ranges from 3 to 6.

Abstraction of Action/Predicate Parameters. This cate-
gory involves modifications to the low-level PDDL domain
by abstracting away one or more action/predicate parameters.
Typically, this includes the removal of a PDDL type, which
often results in the corresponding deletion or modification of
predicates and actions that utilize this type, for instance drop-
ping parameters of this type.

Example 3. Consider the following low-level domain
which models hotel bookings. A hotel room is characterized
by room type (e.g., single or double), and a room view (e.g.,
ocean view or garden view). It is possible to modify a room’s
type, e.g., convert a single room to a double room.
( de f ine ( domain t rave lAr range02 LL )
. . .
( : ac t i on book hote l

: parameters (?h − ho te l ? r − room ? rv − r v iew ? r t −
↪→ r t y p e )

: p recond i t i on ( and ( ava i l ab l e room ho te l ? r ?h )
( roomType ? r ? r t )
( roomView ? r ? rv ) )

: e f f e c t ( and ( booked hote l ? r t ?h ? rv )
( not ( ava i l ab l e room ho te l ? r ?h ) ) ) )

( : ac t i on change RoomType
: parameters (? r − room ? r t 1 ? r t 2 − r t y p e )
: p recond i t i on ( and ( roomType ? r ? r t 1 )

( difRoomType ? r t 1 ? r t 2 )
: e f f e c t ( and ( roomType ? r ? r t 2 )

( not ( roomType ? r ? r t 1 ) ) ) )

Suppose that the purpose of abstraction is defined as “pro-
vide an abstraction of the concrete domain such that the high-
level domain must not include information about room view”.
Then we expect the LLM to abstract over the room view,
and generate the following high-level domain, where the type
r view has been removed, and predicates that utilize r view
have been either adjusted or removed:
( de f ine ( domain t ravelArrange02 HL )
. . .
( : ac t i on book hote l

: parameters (?h − ho te l ? r − room ? r t − r t y p e )
: p recond i t i on ( and ( ava i l ab l e room ho te l ? r ?h )

( roomType ? r ? r t ) )
: e f f e c t ( and ( booked hote l ? r t ?h )

( not ( ava i l ab l e room ho te l ? r ?h ) ) ) )
( : ac t i on change RoomType

: parameters (? r − room ? r t 1 ? r t 2 − r t y p e )
: p recond i t i on ( and ( roomType ? r ? r t 1 )

( difRoomType ? r t 1 ? r t 2 ) )
: e f f e c t ( and ( roomType ? r ? r t 2 )

( not ( roomType ? r ? r t 1 ) ) ) )



If instead we ask the LLM to abstract over the room type,
then in addition to removing r type and adjusting/removing
the associated predicates, we also expect the LLM to elimi-
nate the action change RoomType. The problem instance
can then be adapted accordingly. ■

This category includes 10 examples with domains model-
ing diverse scenarios such as email composition, flight reser-
vation, library, technical report writing, and travel (hotel) ar-
rangements. The number of actions defined within these do-
mains ranges from 1 to 5.

Abstraction of Alternative Sequences of Concrete Actions.
In this category, the low-level domain contains multiple ac-
tion sequences that provide alternative pathways to achieving
a subgoal, and we require each such alternative sequence of
actions to be abstracted into a single action.

Example 4. Consider a low-level domain which models
alternative ways for holding a workshop at a campus: either
a lecture hall is scheduled and the workshop is offered on
campus, or web conferencing software is installed and the
workshop is held online. Now suppose that the purpose of
abstraction instructs the LLM to “abstract over delivering
a workshop session”. A high-level action which satisfies
this purpose of abstraction may use the parameter type
teachingP latform which abstracts over the disjunction
of types lectureHall and webConferenceSoftware,
and a predicate teachingCompleted (as an effect) that
abstracts over the disjunction of the conjunction of pred-
icates lectureHallScheduled and lecturedOnCampus
when teaching platform is lectureHall, and the con-
junction of predicates installedV ideoConferencing
and lecturedOnline when teaching platform refers to
webConferenceSoftware. ■

This category includes 6 examples with domains modeling
scenarios such as event planning, travel arrangements, repair
robot, beverage preparation, and choosing apparel. The num-
ber of actions defined in these domains ranges from 4 to 12.

5 Implementation
5.1 Developing Prompts
Our approach relies on one-shot and zero-shot learning, com-
bined with CoT and role-play. In the chat completions API of
OpenAI’s GPT-4o, prompts can be created by providing an
array of messages that contain instructions for the model. It
is possible to assign a different role to each message, and as
a result, influence how the model might interpret the input.
Here, we consider three roles: system, user, and assistant. A
system prompt sets the overarching context, behavior, or per-
sona for the responses generated. A user prompt contains the
specific instructions or queries that a user provides to an LLM
to elicit a desired response. An assistant prompt represents
the LLM’s response to user inputs, and is conditioned on the
context provided by both the system and user prompts. Assis-
tant prompts also serve as demonstrations of desired outputs
when using in-context learning (e.g., providing example com-
pletions in one-shot prompts).

Abstraction of Alternative Concrete Actions: Zero-Shot
Prompt. The system prompt requires the LLM to assume

the role of a PDDL expert and to reason about the task in
two stages: abstraction of domain and abstraction of problem
instance (see [Banihashemi et al., 2025] for the listings of
prompts). In the first stage, it instructs the LLM to consider
the purpose of abstraction and reason about generating the
high-level domain ontology (types, predicates and actions),
by combining or generalizing related elements, with the help
of partial examples (e.g., two types ’hotel’ and ’airbnb’ can
be combined into ’accommodation’). Note that inclusion of
partial examples is necessary to guide the LLM towards the
intended abstraction as our desired abstraction has not been
part of any LLM’s training data. In the second stage, the LLM
is instructed to use the generated high-level domain compo-
nents to generate the abstract problem instance. The LLM
is required to follow a number of rules which include trying
to minimize the number of domain ontology elements, using
terminology for abstracted domain elements that preserves
focus of the domain, complying with the STRIPS fragment
of PDDL, and ensuring that the goal of the problem instance
remains logically consistent with the abstract domain’s pur-
pose. A user’s query is represented by a user prompt which
includes a brief description of the low-level domain, low-level
domain and problem files in PDDL, and the purpose of ab-
straction. Note that the partial examples in the system prompt
are based on a different topic area than the PDDL domains/in-
stances provided in user queries.

Abstraction of Alternative Concrete Actions: One-Shot
Prompt. The system prompt is similar to the zero-shot ap-
proach but removes the partial examples, and instead the
LLM is instructed to learn from the example provided, re-
ferred to as Case1. The one-shot example is modeled by a
pair of user and assistant prompts. The user prompt includes
a low-level domain and problem instance in PDDL, purpose
of abstraction, and a brief explanation of the domain. In addi-
tion to the high-level domain and problem instance in PDDL,
the assistant prompt includes a rationale for making choices
of abstraction of actions, predicates and types. The user’s
query (referred to as Case2) is modelled as a user prompt
like the zero-shot approach above. Note that the topic area in
Case1 differs from that in Case2.

Abstraction of Sequences of Concrete Actions. This cat-
egory only uses one-shot prompting, as preliminary exper-
iments with zero-shot prompts produced unsatisfactory re-
sults. The system prompt directs the LLM through a two-
stage reasoning process: domain abstraction followed by
problem instance abstraction, guided by Case1 and prede-
fined rules which are mainly similar to the previous category.
The LLM is asked to consider the purpose of abstraction and
identify sequences of actions that should be merged into high-
level actions that achieve the same effect but eliminate un-
necessary intermediate steps. The one-shot example and user
query are modelled similarly to the one-shot approach in the
previous category.

Abstraction of Action/Predicate Parameters. This cate-
gory only uses a zero-shot prompting approach, as it proved
sufficient for generating mostly correct results. The system
prompt instructs the LLM to consider the purpose of abstrac-
tion and decide whether various domain elements (parame-



ters, types, predicates, actions) must be retained or eliminated
in the abstract domain. The user query for this category is de-
fined similar to the previous zero-shot prompt.

Abstraction of Alternative Sequences of Concrete Actions.
Here we restrict our analysis to one-shot prompts, as initial
experiments with zero-shot prompts produced unsatisfactory
outcomes. The system prompt is structured similar to pre-
vious categories’ system prompt for one-shot learning, how-
ever, it is more generic and includes abstraction instructions
which combine elements from all previous categories The
user query and one-shot demonstration are modelled similar
to previous categories.

5.2 Evaluating the Generated Models
We use a hybrid evaluation approach that incorporates both
human evaluation and automated tools. Our method first uses
VAL [Howey et al., 2004] to check for syntax errors in the
generated high-level domain and problem instance, and then
calls the Fast Downward planner [Helmert, 2006] to try to
generate a plan.

Next, the generated high-level domain and problem in-
stance are reviewed by human domain experts. Each gen-
erated high-level domain undergoes a comparative analysis
with a sample abstract domain (already created by a knowl-
edge engineer) which represents a sound abstraction of the
low-level domain in user’s query, and it is part of the solu-
tion to the PDAG task. This evaluation considers the cor-
rectness of abstract actions, predicates, types, and parameters
generated, as well as the removal of actions, predicates, types,
and parameters from the high-level domain that are consid-
ered unnecessary details wrt the purpose of abstraction. Con-
crete domain elements that must be retained in the generated
abstract domain are also considered. Syntax errors are also
noted. High-level problem instances are evaluated similarly.

Human expert evaluation is essential as there may be
more than one correct approach to abstract a domain. E.g.,
in case of “CookFood01” when abstracting over sequence
of low-level actions wash, chop,marinate, grill using two
high-level abstract actions prepare and cook, one solu-
tion may abstract sequence of concrete actions wash, chop
to action prepare, while another solution may consider
wash, chop,marinate as refinement of action prepare.
Moreover, the LLM often generates names for actions/pred-
icates/types that may be different from those in the sample
solution provided. So this part of the evaluation would be
difficult to automate.

As our aim in this paper is to evaluate the feasibility of
using advanced LLMs to generate abstract planning domain
and problem files based on an initial input prompt, we do not
consider providing corrective feedback from users or valida-
tion tools to the LLM to allow it to fix errors and re-generate
high-level domains and/or problem files.

5.3 System Architecture
Fig. 1 shows the outline of our system. Initially, a sys-
tem prompt (and possibly a user/assistant prompt in case of
one-shot in-context learning) is provided to the LLM (GPT-
4o) which describes the task, rules to follow, expected input

and desired output. The user then provides his query which
consists of a low-level PDDL domain and its brief descrip-
tion, PDDL problem instance, and the purpose of abstraction.
After the LLM processes the query, it generates a response
which includes a high-level domain and a high-level problem
instance in PDDL as well as a natural language description of
the justification for the specific choices of abstraction made.

Our code then extracts the generated high-level PDDL do-
main and problem instance as .pddl files and sends them to the
validation module (which includes VAL and the Fast Down-
ward Planner). The validation results and a plan in case of
success, or error messages in case of failure, a summary re-
port, in addition to the generated PDDL domain and problem
instance as well as the natural language description of the jus-
tification for the specific choices of abstraction are then saved
to a datastore. A human evaluator then reviews the stored in-
formation and saves the results of analysis to the datastore.
Note that we don’t formally verify that the LLM generated
high-level domain/problem instance is a sound abstraction
and satisfies the constraints on the mapping associated with
the purpose of abstraction; this is left for future work.

Generate

Query: New low-level PDDL domain and its brief description, PDDL
problem instance, in addition to the purpose of abstraction Pretrained LLM

Generated high-level PDDL domain,
problem instance as well as a natural

language description of the justification
for the specific choice of abstraction

Validation
High-level PDDL domain and problem

instance, justification, a summary report and
possibly a plan Output and potential

Error Messages

Data store
Human

Evaluator

PDDL Domain and
Problem Instance

Save

Natural language description of the task, rules, expected input and
desired output

[In case of One-Shot Prompt, an example of PDDL low-level domain
and its brief description, PDDL problem instance, and purpose of

abstraction, plus a sample solution] 

Evaluation Summary

Read PDDL high-level
domain and problem

instance, a summary report
and possibly a plan 

PDDL Domain and Problem
Instance, and the justification

Figure 1: Generating Abstract PDDL Domain and Problem Instance

6 Empirical Evaluation
Each of our benchmark examples within each category was
run five times. Tables 1 to 5 present the aggregated results.
The table columns show the following metrics: Changes
Needed (CN): correctness score of predicates/actions/types
intended to be abstracted or eliminated as evaluated by hu-
man experts (e.g., generalizing hotel and airbnb to accom-
modation). CN-SD: standard deviation of CN scores. Avoid
Unnecessary Changes (AUC): correctness score of predi-
cates/actions/types/objects that were expected to remain un-
changed in the high-level domain and problem instance as
evaluated by human domain experts (e.g., keeping the type
room in the abstract domain and problem instance in Exam-
ple 1). HDE, VAL, and FD indicate if syntax errors were
present and whether they were detected by human domain
experts (HDE), VAL, or the Fast Downward planner (FD). If
the planner fails to generate a plan, we count this as an FD
error.

Our experiment results show that GPT-4o can generate al-
most error-free results for abstraction of action/predicate pa-
rameters, but as the difficulty of abstraction increases with
abstraction of alternative concrete actions, sequences of con-
crete actions, and alternative sequences of concrete actions,
the quality of generated domains/problem instances declines
and the number of syntax errors increases. We observed that



CN CN-SD AUC AUC-SD HDE FD VAL
(Avg) (Avg) (Count) (Count) (Count)

DailyPlan01 75.11% 13.8 100% 0 2 0 2
DailyPlan02 85.07% 5.5 98.46% 3.08 3 3 3

HouseHold01 100% 0 100% 0 0 0 0
ClothesShop01 88.46% 14.13 74.55% 31.18 0 0 0
SoftwareDev01 94.28% 6.29 100% 0 0 0 0
SoftwareDev02 90.95% 4.86 97.71% 2.8 0 0 0
SoftwareDev03 96% 2.42 91.11% 4.44 0 0 0
SoftwareDev04 97.88% 1.73 100% 0 0 0 0

Table 1: Abstraction of Alternative Concrete Actions - Zero-Shot

CN CN-SD AUC AUC-SD HDE FD VAL
(Avg) (Avg) (Count) (Count) (Count)

DailyPlan01 93.19% 2.08 100% 0 2 2 2
DailyPlan02 100% 0 100% 0 0 0 0

HouseHold01 100% 0 100% 0 0 0 0
ClothesShop01 100% 0 100% 0 0 0 0
SoftwareDev01 100% 0 100% 0 0 0 0
SoftwareDev02 87.14% 11.82 68% 27.01 1 1 0
SoftwareDev03 98.12% 2.31 100% 0 2 0 2
SoftwareDev04 100% 0 100% 0 0 0 0

Table 2: Abstraction of Alternative Concrete Actions - One-Shot

the majority of mistakes were in generating new predicates
which abstract over concrete predicates. We also noticed that
changing the order of action declarations or including addi-
tional constructs (actions, types, objects, predicates) which
are irrelevant to the goal of the task do not cause additional er-
rors. In general, the LLM was able to name abstracted action-
s/predicates/types reasonably well; however, in some cases,
names for high-level domain constructs were incorrect. E.g.,
in DailyPlan01, the abstraction of alternative concrete actions
orderFood and cook was named eat. See [Banihashemi et al.,
2025] for a more detailed discussion on evaluation results.

7 Related Work
Several authors have studied using LLMs to generate PDDL
specifications given natural language descriptions of the task.
[Liu et al., 2023] assumes that a PDDL domain description
and a contextual example demonstrating the conversion of a
natural language problem within the domain into a PDDL
problem are provided by human experts, and the LLM is
tasked with generation of the PDDL specification of a prob-
lem instance (based on the domain) given a natural language
description of the problem. [Xie et al., 2023] studies ex-
tracting a planning goal given a natural language instruction,
by using zero-shot and few-shot prompting. [Guan et al.,
2023] follows a strategy where few-shot prompting is used
to generate a PDDL representation of a single action at a

CN CN-SD AUC AUC-SD HDE FD VAL
(Avg) (Avg) (Count) (Count) (Count)

CookFood01 79.2% 6.01 88.61% 13.41 0 0 0
CookFood02 72.4% 7.2 95.45% 9.09 0 0 0

CarManufacturing01 48.04% 9.71 92.68% 14.63 2 2 2
CleanItem02 71.59% 7.65 100% 0 2 1 1

LaptopShop02 65.15% 15.15 83.64% 13.36 0 0 0
DeliveryRobot01 78% 15.86 80.47% 10.36 2 1 2
DeliveryRobot02 86.21% 0 92.45% 0 0 0 0
DeliveryRobot03 100% 0 94.67% 2.67 0 0 0
DeliveryRobot04 92.55% 5.17 89.33% 9.98 1 1 1
RescueRobot02 89.92% 4.96 96.42% 5.22 0 0 0
RescueRobot03 87.5% 5.24 92.54% 5.26 1 1 1

Table 3: Abstraction of Sequences of Concrete Actions - One-Shot

CN CN-SD AUC AUC-SD HDE FD VAL
(Avg) (Avg) (Count) (Count) (Count)

Email01-0 100% 0 100% 0 0 0 0
Email01-1 100% 0 100% 0 0 0 0
Flight01 100% 0 100% 0 0 0 0
Flight02 100% 0 100% 0 0 0 0

Library01-1 100% 0 100% 0 0 0 0
Library01-2 96.92% 6.15 96.10% 7.62 0 0 0

TechReport01 100% 0 100% 0 0 0 0
TechReport02 100% 0 100% 0 0 0 0

Travel02 100% 0 100% 0 0 0 0
Travel03 100% 0 100% 0 0 0 0

Table 4: Abstraction of Action/Predicate Parameters - Zero Shot

CN CN-SD AUC AUC-SD HDE FD VAL
(Avg) (Avg) (Count) (Count) (Count)

BeveragePreparation01 43.92% 27.79 100% 0 9 1 9
ClothesShop02 65.37% 13.59 100% 0 0 0 0

EventPlanning01 56.62% 1.5 96.1% 2.46 13 3 14
RepairRobot04 67.03% 5.21 87.06% 7.8 3 3 3

RoomRedesign01 69.6% 3.32 100% 0 12 3 12
Travel05 62.14% 11.85 100% 0 10 2 11

Table 5: Abstraction of Alternative Sequences of Concrete Actions

time, while dynamically updating a list of predicates, and
ultimately repeating the process with all the extracted pred-
icates. [Oswald et al., 2024] also uses in-context learning to
generate PDDL domains on an action-by-action basis using
context examples from other domains. The query in the in-
put prompt includes the allowed predicates that can be used
in the definition of that action and a natural language descrip-
tion of the action. The above approaches do not involve gen-
erating abstractions of low-level PDDL domains or problem
instances. To address complex sequential decision-making,
[Liu et al., 2024] introduces SkillAct, a prompting method
that integrates reusable, task-relevant skill descriptions into
prompts. Skills abstract high-level behaviors from agent tra-
jectories (observation-action sequences) and are derived from
the LLM’s embedded world knowledge via prompting. The
skills/generated outputs are not formalized in PDDL.

8 Conclusion and Future Work
In this paper, we investigated the feasibility of using an LLM
(GPT-4o) to generate high-level PDDL domains and problem
instances from low-level PDDL representations, guided by a
specified abstraction purpose.

In future work, we plan to extend our set of examples and
study additional abstraction categories. We will also consider
using the more expressive ADL [Pednault, 1989] fragment
of PDDL. Building a dataset of planning examples that can
be used for fine-tuning an LLM is another avenue for further
research. We are also interested in designing other types of
prompts that could enhance the generated results. We will
also examine extending the current abstraction task to incor-
porate the generation of a refinement mapping so that one
can then check that the output high-level model is a sound
abstraction of the low-level model relative to this mapping.
A significant area for future work lies in the development
of (partially) automated validation mechanisms to ensure the
correctness of the abstracted domains and problems generated
by LLMs. More work on the formalization of the abstraction
purpose and automated mechanisms that check the generated
models’ adherence to it is also indicated.
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