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Abstract

Temporal Equilibrium Logic (TEL) extends An-
swer Set Programming (ASP) with linear-time tem-
poral operators (LTL), enabling reasoning about
dynamic systems. However, TEL enforces strong
minimization criteria that may preclude intuitive
models. Liveness formulas, for instance, tend
to fail to have infinite equilibrium models, as
TEL minimization postpones satisfaction forever.
We address this limitation by introducing eager
temporal operators (eager Until, eager Release,
etc.), and present non-disjunctive temporal pro-
grams (NDTP) as a framework for modeling de-
pendencies, inertia, and non-determinism. Decid-
ing satisfiability of NDTPs is possible in exponen-
tial time and in fact PSPACE-complete.

Answer Set Programming (ASP ) [Brewka et al., 2011;
Lifschitz, 2019] has been widely applied in dynamic environ-
ments, including applications in planning, multi-agent sys-
tems, and reasoning about evolving domains [Falkner et al.,
2018]. ASP semantics is particularly well-suited for such
settings due to its capability of expressing transitive closure,
addressing the frame problem (via inertia rules), and provid-
ing both default and strong negation, which enables rich and
flexible modeling possibilities. Temporal Equilibrium Logic
(TEL) [Aguado et al., 2023] builds on this foundation by
bridging the gap between the expressive power of linear-time
temporal logic (LTL) [Pnueli, 1977] operators and the sta-
ble semantics of ASP . By integrating these paradigms, TEL
provides a unified framework for reasoning about dynamic
systems while preserving the non-monotonic reasoning capa-
bilities and desirable properties of ASP .

Our main contributions, described in detail and supple-
mented with examples and discussion in [Eiter and Soldà,
2025], are briefly summarized as follows.

● We introduce new versions of the temporal operators that
unfold eagerly. While they are indifferent in LTL, they sus-
pend minimization and thus allow for stable models in scenar-
ios where such models are intuitively expected. Notably, the
new versions are expressible in TEL and the resulting exten-
sion of TEL has the same complexity, i.e., TEL-satisfiability
is EXPSPACE-complete [Bozzelli and Pearce, 2015].

● We define NDTP as a rule-based fragment of the new
language that, on the one hand, overcomes the problem of
strong minimization and, on the other hand, has consider-
ably lower complexity. The former is achieved by using eager
temporal operators in rule heads and the latter by disallowing
the disjunction, which quickly leads to EXPSPACE-hardness
[Šimkus, 2010]. We show that NDTP programs have benign
properties, e.g. deciding TEL-satisfiability is in feasible in
exponential time and model checking in polynomial time.
● Based on NDTP , we define a tight version of temporal
programs (TTP ). By generalizing results for ordinary tight
logic programs [Erdem and Lifschitz, 2003], we show that
the stable models of TTP programs are obtained as the LTL-
models of their temporal Clark’s completion that we define.
As a result, we obtain a polynomial encoding of TTP into
LTL. Furthermore, we show that tightness of temporal pro-
grams can be decided efficiently in nlogspace.

In this extended abstract, we concentrate on TEL-
satisfiability, for which PSPACE-hardness is a lower bound
by well-known results on temporal logic programs, cf. also
[Šimkus, 2010]. A PSPACE upper bound was considered
plausible in [Eiter and Soldà, 2025]. This in fact turns
out to apply, closing the gap and establishing PSPACE-
completeness. NDTP is thus a rich modeling language for
dynamic domains of the same complexity as classical LTL.
Note that this complexity results can be applied also to the
deontic extension of TEL defined in [Soldà et al., 2025].

1 Preliminaries
Both TEL and THT [Aguado et al., 2023] share the same
syntax as LTL. Here we introduce the grammar

F ∶∶= ⊺ ∣ � ∣ p ∣ F △ F ∣ ○ F ∣ ● F ∣ F O F (1)

where p ∈ P for a finite set P of propositional atoms, △ ∈ {∧,
∨,→}, and O ∈ {U,R,S,T}. Negation is defined as ¬ϕ ∶=

ϕ → �. As usual, □ (globally) is defined by □ϕ ∶= �Rϕ; ♢
(eventually) by ♢ϕ ∶= ⊺Uϕ; ∎ (historically) by ∎ϕ ∶= �Tϕ;
⧫ (once) by ⧫ϕ ∶= ⊺Sϕ; ○̂ (weak next) by ○̂ϕ ∶= ○ϕ∨¬○⊺; and
●̂ (weak previous) by ●̂ϕ ∶= ●ϕ ∨ ¬●⊺. For any unary operator
u, we let ×0ϕ denote ϕ and ×i+1ϕ denote uuiϕ, for i ≥ 0.

The semantics of THT is defined via THT -traces (simply
traces, if unambiguous), which are finite or infinite sequences
⟨H,T⟩ of pairs ⟨Hi, Ti⟩, where Hi ⊆ Ti ⊆ P for each 0 ≤ i <



λ, where λ can be either in N or ω. Both H and T are traces
as usual (LTL-traces), i.e., sequences H = H0,H1, . . . resp.
T = T0, T1, . . . of sets of atoms. Given a THT -trace I (or an
LTL-trace T), we denote its length by λI (resp. λT).

Definition 1 (THT -Satisfaction). Satisfaction of a THT for-
mula by a THT -trace I = ⟨H,T⟩ at time k, where 0 ≤ k is
integer, is inductively defined as follows:

1. I, k /⊧ � and I, k /⊧ ⊺

2. I, k ⊧ p if p ∈Hk, for any atom p ∈ P

3. I, k ⊧ ϕ ∨ ψ if I, k ⊧ ϕ or I, k ⊧ ψ

4. I, k ⊧ ϕ ∧ ψ if I, k ⊧ ϕ and I, k ⊧ ψ

5. I, k ⊧ ϕ→ ψ if {
⟨T,T⟩, k /⊧ ϕ or ⟨T,T⟩, k ⊧ ψ, and
I, k /⊧ ϕ or I, k ⊧ ψ

6. I, k ⊧ ○ ϕ if k + 1 < λ and I, k + 1 ⊧ ϕ

7. I, k ⊧ ϕ U ψ if there is j ≥ k s.t. I, j ⊧ ψ,
and for all j′ ∈ [k, j), I, j′ ⊧ ϕ

8. I, k ⊧ ϕ R ψ if for all j ≥ k s.t. I, j /⊧ ψ,
there exists j′ ∈ [k, j), I, j′ ⊧ ϕ

9. I, k ⊧ ● ϕ if I, k − 1 ⊧ ϕ and k > 0

10. I, k ⊧ ϕ S ψ if there is j ≤ k s.t. I, j ⊧ ψ,
and for all j′ ∈ (j, k), I, j′ ⊧ ϕ

11. I, k ⊧ ϕ T ψ if for all j ≥ k s.t. I, j /⊧ ψ,
there exists j′ ∈ [k, j), I, j′ ⊧ ϕ,

TEL semantics is now as follows [Aguado et al., 2023].

Definition 2. A trace T is a stable (equilibrium, TEL) model
of formula ϕ if (i) T ⊧ ϕ, i.e., T is an LTL model of ϕ, and
(ii) no H ≠ T exists s.t. ⟨H,T⟩ ⊧ ϕ.

2 PSPACE-membership for NDTP

We propose eager variants of Ue, Re, Se, and Te, which un-
fold deterministically once a T-trace is fixed.

Definition 3. The eager variant Oe of the operator O ∈
{U,R,S,T} is as follows. For any THT -trace I = ⟨H,T⟩
and time point k ≥ 0,

12. I, k ⊧ ϕ Ue ψ if there exists some j ≥ k s.t. I, j ⊧ ψ, and
for all j′ ∈ [k, j), I, j′ ⊧ ϕ and T, j′ /⊧ ψ;

13. I, k ⊧ ϕ Re ψ if for all j ≥ k s.t. (a) I, j /⊧ ψ or (b)
T, j ⊧ ϕ andI, j /⊧ ϕ, some j′ ∈ [k, j) exists s.t. I, j′ ⊧ ϕ;

14. I, k ⊧ ϕ Se ψ if there is some j ≤ k s.t. I, j ⊧ ψ, and for
all j′ ∈ (j, k), I, j′ ⊧ ϕ and T, j′ /⊧ ψ;

15. I, k ⊧ ϕ Te ψ if for all j ≥ k s.t. (a) I, j /⊧ ψ or (b) T, j ⊧
ψ and I, j /⊧ ψ, some j′ ∈ [k, j) exists s.t. I, j′ ⊧ ϕ.

As usual, we can derive further operators such as: □e (ea-
ger globally) by □eϕ ∶= � Re ϕ; ♢e (eager eventually) by
♢eϕ ∶= ⊺ Ue ϕ; ∎e (eager historically) by ∎eϕ ∶= � Te ϕ; etc.

We introduce NDTPs, nondisjunctive temporal programs,
a rule-based fragment extending the class considered in [Er-
dem and Lifschitz, 2003] to the temporal case by incorporat-
ing TEL modalities in the body and allowing arbitrary nest-
ing of eager unfoldable operators in the head.

Definition 4. A NDTP program π consists of sets
(i) init(π) of initial rules of the form r ∶ ψ → ϕ, where

ϕ is either � or a head formula from the grammar
ϕ ∶∶= η[ϕ] ∣ ϕ Oe ϕ for Oe ∈ {Ue,Re,Se,Te}

ψ ∶∶= ψ1 ∣ ψ2

ψ1 ∶∶= η[ψ1] ∣ ψ1 ∨ ψ1 ∣ ψ1O ψ1 for O ∈ {U,R,S,T}
ψ2 ∶∶= η[ψ2] ∣ ¬γ ∣ ψ2 ∨ ψ2

η[µ] ∶∶= ⊺ ∣ p ∣ ○η[µ] ∣ ○̂η[µ] ∣ ●η[µ] ∣ ●̂η[µ] ∣

η[µ] ∧ η[µ] ∣ µ

where p ∈ P and γ is an arbitrary TEL formula, η[µ] is
parameterized by a grammar symbol, and

(ii) dyn(π) of dynamic rules □r, where r is an initial rule.
The NDTP fragment disallows: (i) nesting of implications

outside the scope of a negation, (ii) negation within temporal
unfoldable operators, and (iii) disjunctions in the head. It per-
mits (i) eager operators in the head, and (ii) arbitrary formulas
under negation. As for deciding TEL-satisfiability of NDTP
programs, we have the following result.
Theorem 1. Deciding whether an NDTP program π is
TEL-satisfiable is in PSPACE.

Proof. (Sketch) The proof proceeds by encoding the program
π into a Büchi automaton using well-established LTL-to-
automata techniques by adapting the on-the-fly automata con-
struction for LTL as discussed in [Vardi, 2005] and adding a
condition to guarantee the absence of loops.

The LTL-automata construction we build on our proof is
the synchronous product of (1) the local-automaton and (2)
the fulfillment-automaton. More in detail, (1) enforces the lo-
cal consistency of the evaluation of an LTL-formula along the
paths and the handling of the unfolding of the temporal opera-
tors; (2) enforces that, whenever an αUβ-formula is regarded
to be true in a state, the fulfillment condition ( realization of
β) will eventually happen and not infinitely postponed.

We can guarantee the absence of self-supported sets of
atoms by guessing the truth-value of the sub-formulas at each
node and disregarding the nodes where the guess does not
match the set of formulas obtainable via iterative immediate
consequence until a fixed-point is reached. To derive an atom
p, we may have to make assumptions on future states, e.g. if
p at the i-th node can be derived by ○q → p; in this case, we
employ a labeling schema and label q in the next with index-
i, and, recursively, each future-assumption with the minimal
index among the states where it is supporting an atom. We
further require for acceptance of a path in the Büchi automa-
ton that for each such index, some state exists where such an
index does not appear. The latter ensures that foundedness in
the derivation of atoms along the trace is eventually met.

The argument can be adapted to finite-traces by requir-
ing no propagation of indexes at the last state. Notably, the
stronger condition that some state has no index-label is not
made. This is because all future assumptions might eventu-
ally be justified, but through different patterns for different
subformulas. A simple case of such a case is

□((prUeqr) ∧ (psUeqs) ∧ (○qr → r) ∧ (○qs → s))

which admits a temporal equilibrium trace where s, ps and qr
hold at even states, and r, pr and qs hold at odd states.
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