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Abstract
Generalised Planning refers to the task of synthe-
sising programs that can solve families of related
planning problems. We propose a novel generalised
planner MOOSE which employs powerful, decades-
old ideas from the knowledge representation and
planning communities: regression rewriting, re-
laxation, and database algorithms. We formalise
and describe a new class of generalised problems
for which our approach can learn sound and com-
plete generalised plans. MOOSE is also the first
learning approach for provably optimal planning
across problems with arbitrarily many objects. Ex-
perimental results show that MOOSE solves more
problems than state-of-the-art planners over classi-
cal, numeric, and optimal planning settings on the
tested benchmarks. Notably, MOOSE uses less than
1GB of memory to synthesise and instantiate gen-
eralised plans across all experiments.

1 Introduction
Generalised Planning (GP) aims to compute generalised
plans: programmatic plans that can solve families of related
planning problems. A grand goal of GP is to overcome
the scalability issues of general-purpose planners which are
sound and complete for decidable planning problems, but in
turn are not able to leverage patterns in and solve similarly
structured problems more efficiently. Indeed, several plan-
ning domains exist that are computationally easy to solve and
exhibit satisficing policies, such as variants of the package
delivery domain [Helmert, 2003]. UPSTM delivered over 20
million packages every day across over 200 countries and ter-
ritories in 2024 [UPS, 2025]. However, state-of-the-art plan-
ners struggle to scale up to a simplified version of the delivery
problem with 100 packages [Taitler et al., 2024].

A GP problem typically comprises a planning domain D
representing an action theory, and a set of planning problems
P. Figure 1 illustrates the two main modules characteristic
of many approaches for GP. The first module (green) takes
as input an action theory D and a set of example problems
Ptrain drawn from P in order to synthesise a generalised plan
for solving problems in P. The second module (blue) instan-
tiates the generalised plan on a given input problem sharing

GP problem Training problems

(1) Synthesise a
generalised plan from

training problems

Generalised plan

Planning TaskPlanning TaskPlanning problem (2) Instantiate the
generalised plan to

solve a problem

policy policy Plan

Figure 1: A common GP setup consisting of an action theory D and
set of planning problems P satisfying the action theory. A gener-
alised planner consists of two modules: (1) synthesis and (2) instan-
tiation. See text for more details.

the same action theory in order to provide a goal-achieving
plan for that problem. Problems that are input into the second
module may exhibit any number of objects.

Srivastava et al. [2011a] introduced several metrics for
measuring the effectiveness of a generalised planner, includ-
ing the size of the set of planning domains an approach can
solve (expressiveness), the time and data it takes to synthesise
a generalised plan (synthesis cost) for a given domain, and the
cost it takes to instantiate and execute the generalised plan for
new planning problems (execution cost) of a given domain.
Generalised planners aim to amortise the cost of synthesis-
ing a generalised plan against the cost of solving each plan-
ning problem individually. However, recent planning compe-
tition results also show that current generalised planners are
still outperformed by traditional planners on standard plan-
ning domains [Taitler et al., 2024], suggesting much room
for improvement across all three GP metrics.

In this paper, we introduce MOOSE, a new generalised
planner which draws upon insights and long-standing ideas
from the knowledge representation and reasoning (KRR)
and planning communities to advance the state of the art
in GP. To capture expressive policies we employ regression
rewriting, a preimage computation of a state under a se-
quence of actions [Fikes et al., 1972; Waldinger, 1977; Reiter,
1991]. We use regression to identify sufficient and minimal
state conditions required for generating lifted, goal-achieving
rules [Muise et al., 2012; Illanes and McIlraith, 2019] from
our training plans. To lower synthesis costs, we relax the



sail
    var: from, to
    pre: at-ferry(from)
    add: at-ferry(to)
    del: at-ferry(from)

board
    var: car, loc
    pre: at(car, loc), at-ferry(loc), empty-ferry()
    add: on(car)
    del: at(car, loc), empty-ferry()

debark
    var: car, loc
    pre: on(car), at-ferry(loc)
    add: at(car, loc), empty-ferry()
    del: on(car)

rule1
     vars : car, loc
   s-cond : at-ferry(loc), on(car)
   g-cond : at(car, loc)
  actions : debark(car, loc)

rule2
     vars : car, loc1, loc2
   s-cond : at-ferry(loc1), on(car)
   g-cond : at(car, loc2)
  actions : sail(loc1, loc2), debark(car, loc2)

...

rule4
     vars : car, loc1, loc2, loc3
   s-cond : at(car, loc1), at-ferry(loc3), empty-ferry()
   g-cond : at(car, loc2)
  actions : sail(loc3, loc1), ..., debark(car, loc2)

at-ferry(CocosIsland)
at(Holden, ChristmasIsland)
at(Toyota, Tokyo)
at(LandRover, Mumbai)
empty-ferry()

at-ferry(Adelaide)
on(Holden)
at(Toyota, Tokyo)
at(LandRover, Mumbai)

at-ferry(Adelaide)
at(Holden, Adelaide)
at(Toyota, Tokyo)
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empty-ferry()

at(Holden, Adelaide)

at-ferry(CocosIsland)
at(Holden, ChristmasIsland)
empty-ferry()

at-ferry(Adelaide)
on(Holden)

debark(Holden, Adelaide)

sail(CocosIsland, ChristmasIsland)
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...... ...
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Figure 2: Left: the Ferry planning domain consisting of three PDDL action schemata for a ferry to sail, board a car, and debark a car. Middle:
progression of the initial state of a planning problem (purple) via the plan in the center (white), and the regression of the goal condition
(yellow) via the same plan. Right: the generalised plan created by lifting the plan actions, regressed states, and the goal condition.

goal by splitting conjunctive goals into singleton goals, under
the observation that lifted policies are agnostic to the count-
ing and unique identification of objects. Relaxing the policy
synthesis problem parallels the planning technique of relax-
ing the problem to derive tractable and powerful heuristics
for solving planning problems [Hoffmann and Nebel, 2001;
Edelkamp, 2002; Helmert and Domshlak, 2009]. Lastly, to
optimise execution costs, we leverage database algorithms in
order to query and execute lifted policy rules efficiently.

We also theoretically formalise the conditions under which
MOOSE learns sound and complete generalised plans as well
as pruning rules which preserve optimal solutions when used
in search. This is done by providing a refined classification of
planning domains via goal decoupling, and an equivalence of
planning problems via object isomorphism. We then conduct
experiments on Easy-to-Solve, Hard-to-Optimise (ESHO)
planning domains, P-time solvable and NP-hard to solve op-
timally domains. Experimental results show that MOOSE
solves 33/61/23% more planning problems than state-of-the-
art planners for classical/numeric/optimal planning, respec-
tively. We summarily list our contributions as follows.
• We introduce MOOSE, a generalised planner for synthesis-

ing and executing generalised plans, by making use of re-
gression rewriting, relaxation, and database algorithms.

• We formalise the conditions under which MOOSE is sound
and complete for satisficing and optimal planning.

• We conduct experiments and demonstrate the effectiveness
of MOOSE in satisficing, optimal and numeric planning set-
tings relative to state-of-the-art planners.

2 Planning Background and Notation
We adopt standard notation and terminology for represent-
ing planning problems via the Planning Domain Definition
Language (PDDL) [McDermott et al., 1998; Haslum et al.,
2019]. A planning problem is represented by two compo-
nents: a domain, consisting of lifted predicates and action
schemata describing the action theory, and a problem specifi-
cation, consisting of a finite set of objects, an initial state, and
a goal condition. We begin with some general notation.

Mathematical Notation Let N/N0 denote the natural num-
bers excluding/including 0, α⃗ denote an ordered sequence of
items, α⃗i denote the ith element of α⃗, α⃗[i:] all elements from
the ith element onwards in α⃗ inclusive, and |s| the size of a
set or length of a sequence s.

Definition 1 (Planning Domain). A planning domain is a tu-
ple D = ⟨P, C,A⟩, where P is a set of predicates, C a set
of constant objects, and A a set of action schemata. A pred-
icate p ∈ P has a set of argument terms x1, . . . , xnp

where
np ∈ N0 depends on p. An action schema a ∈ A is a tuple

a = ⟨var(a), pre(a), add(a), del(a)⟩

where var(a) is a set of parameter variables, and precondi-
tions pre(a), add add(a) and delete del(a) effects are finite
sets of predicates from P with arguments instantiated with
variables or objects from var(a) ∪ C.

Definition 2 (Planning Problem). A planning problem is a
tuple P = ⟨D, s0, g,O⟩ where D = ⟨P, C,A⟩ is a planning
domain, s0 the initial state, g the goal condition, and O ⊇ C
a finite set of objects. A (ground) atom is a predicate whose
argument terms are all instantiated with objects. A state in
a planning problem is a set of atoms and operate under the
closed world assumption: any atom not in a state is presumed
false. The initial state s0 and goal condition g are both sets
of atoms. A state s is a goal state if g ⊆ s. We say that the
problem P belongs to the domain D.

A (ground) action is an action schema a where each param-
eter term is instantiated with an object, denoted a(o1, . . . , on)
with o1, . . . , on ∈ O. An action a is applicable in a state s if
pre(a) ⊆ s, in which case we define the successor

succ(s, a) = (s \ del(a)) ∪ add(a). (1)

Otherwise, a is not applicable in s and succ(s, a) = ⊥.
A plan for a planning problem is a finite sequence of ac-
tions α⃗ = a1, . . . , an where si = succ(si−1, ai) ̸= ⊥ for
i = 1, . . . , n and sn is a goal state. We overload the notation
of successor for sequences of actions with succ(s, α⃗) = sn as
if s = s0. The length of a plan α⃗ is the number of actions it



contains. A problem P is solvable if a plan exists for P. Sat-
isficing (resp. optimal) planning refers to the task of finding
any plan (resp. any plan with the lowest length) for P.
Notational Shorthands We now introduce a few additional
notational shorthands which will be useful for later. Let P[ω]
denote the ω component of a problem P; e.g., P[s0] is the
initial state of P. Furthermore, given a state s and set of
atoms g′ for a problem P, let Ps = ⟨D, s,P[g],P[O]⟩ denote
the same problem with the initial state replaced with s, and
Ps,g′ = ⟨D, s, g′,P[O]⟩ denote the same problem with the
initial state and goal replaced with s and g′.
Goal Regression Goal regression refers to the act of com-
puting the preimage of a goal under a sequence of actions
via regression rewriting [Fikes et al., 1972; Waldinger, 1977;
Reiter, 1991; Reiter, 2001]. It is a powerful technique for
computing the minimal set of goal relevant atoms. It has been
used for heuristic synthesis [Bonet and Geffner, 2001; Scala
et al., 2016], plan monitoring [Fritz and McIlraith, 2007],
policy synthesis for lifted Markov decision processes [Gret-
ton and Thiébaux, 2004; Sanner and Boutilier, 2006; San-
ner and Boutilier, 2009], nondeterministic planning [Muise
et al., 2012; Muise et al., 2024], symbolic search [Pang and
Holte, 2011; Alcázar et al., 2013; Torralba, 2015; Speck et
al., 2025], numeric planning [Illanes and McIlraith, 2017],
generating macro-actions [Hofmann et al., 2020], and GP [Il-
lanes and McIlraith, 2019; Yang et al., 2022].
Definition 3 (STRIPS Regression [Rintanen, 2008]). A set
of atoms g is regressable over an action a if add(a) ∩ g ̸= ∅
and del(a) ∩ g = ∅, in which case we define the regression

regr(g, a) = (g \ add(a)) ∪ pre(a). (2)

Otherwise, g is not regressable over a and regr(g, a) = ⊥.

3 Generalised Planning via Goal Regression
We first introduce the generalised planning (GP) problem as a
set of planning problems sharing the same domain following
from [Levesque, 2005; Srivastava et al., 2008; Bonet et al.,
2009; Srivastava et al., 2011a; Hu and De Giacomo, 2011;
Celorrio et al., 2019; Segovia-Aguas et al., 2024].
Definition 4 (Generalised Planning Problem). A generalised
planning (GP) problem is a tuple of a domain and a possi-
bly infinite set of solvable planning problems GP = ⟨D,P⟩
where all planning problems P ∈ P belong to D.

A generalised plan π for a GP problem GP = ⟨D,P⟩ is
a programmatic plan that can be instantiated on any plan-
ning problem P ∈ P to return a plan π(P) = α⃗ for
P. We call a generalised plan π a solution if for every
P ∈ P, the plan π(P) is a valid solution for P. Exam-
ples of programmatic plans may include (memoryless) fi-
nite state controllers [Bonet et al., 2009; Bonet et al., 2010;
Hu and De Giacomo, 2011; Aguas et al., 2018], policies
derived from lifted rules [Srivastava et al., 2011b; Illanes
and McIlraith, 2019; Francès et al., 2021] and general-
purpose programs [Levesque, 2005; Srivastava et al., 2008;
Segovia-Aguas et al., 2024; Silver et al., 2024]. Figure 1 il-
lustrates the pipeline with which one synthesises generalised
plans. In practice, the generalised plan is synthesised using

a representative subset of the problems in P, i.e., Ptrain =
{P(1), . . . ,P(n)} ⊆ P. We will later discuss the selection
of this subset and the implications it has for the completeness
of the resultant generalised plan of our approach.
MOOSE Program We name our generalised plans as
MOOSE programs. MOOSE programs are found in a two-
step process as described in Section 3.1: (a) decompose the
set of training problems Ptrain into smaller problems constitut-
ing singleton goal conditions and generate optimal plans for
each in order, and (b) apply goal regression from the single-
ton goals using the order of the optimal plans found in (a) to
generate a set of lifted rules. MOOSE programs can be instan-
tiated into a plan for a problem by deriving an action from the
rule set at every state until the goal is reached (Section 3.2),
or used to guide search for optimal planning (Section 3.3).

MOOSE programs are sets of lifted rules which indicate an
action or macro action to execute, conditioned on a partial
state and a goal that has not yet been achieved. A distinct
feature of such rules is that the antecedent of a single rule
compactly captures a set of states. Lifted rules can then be
grounded on states if their antecedent condition is satisfied.
Our rules are similar to existing lifted rules [Khardon, 1999;
Illanes and McIlraith, 2019; Yang et al., 2022] with the exten-
sion that we may now have macro actions in rule heads. Fur-
thermore, each rule has an associated precedence value which
determines its execution priority as is common in logic pro-
gramming. Figure 2 illustrates the synthesis procedure and
structure of MOOSE programs.
Definition 5 (MOOSE Rule). Let GP = ⟨D,P⟩ be a GP
problem. A MOOSE rule r is a tuple

r = ⟨var(r), stateCond(r), goalCond(r), actions(r)⟩

where var(r) is a finite set of free variables, stateCond(r)
and goalCond(r) are finite sets of predicates instantiated with
terms in var(r), and actions(r) is a finite sequence of action
schemata instantiated with terms in var(r).
Definition 6 (Grounding). Let r be a MOOSE rule, P be a
problem and s a state in the state space of P. A grounding of
r in s is an assignment of objects to variables f : var(r) →
P[O] such that stateCond(r)|f ⊆ s and goalCond(r)|f ⊆
(P[g] \ s), the set of goal atoms not yet achieved. The |f
notation denotes replacing every occurrence of a free variable
term with the corresponding object in f . In the case that a
grounding f exists, we define the nondeterministic function

grounding(r, s,P[g]) = actions(r)|f , (3)

where f is some grounding. Otherwise, if no grounding exists
then grounding(r, s,P[g]) = ⊥.
Definition 7 (MOOSE Program). A MOOSE program π is a
set of MOOSE rules R and a function R → N representing a
precedence ranking on the rules for execution.

As to be described later, if several rules are applicable in
a given state, the rule with the lowest precedence ranking
with ties broken arbitrarily is chosen for execution. Relat-
edly, Yang et al. [2022] specify a total order on policy rules,
whereas MOOSE specifies more relaxed partial order. Next,
we define lifting of a ground plan and set of atoms to a set of



Algorithm 1: MOOSE Program Synthesis

Input: Training problems Ptrain = P(1), . . . ,P(nt), and
number of goal permutations np ∈ N (default: 3).

Output: MOOSE program π.
1 π ← ∅
2 for i = 1, . . . , nt do
3 ng ← |P(i)[g]|
4 for j = 1, . . . ,min(np, ng!) do
5 s← P(i)[s0]

6 g⃗ ← newPermutation(P(i)[g])
7 for k = 1, . . . , ng do
8 g′ ← {g⃗k}
9 α⃗← optimalPlan(P

(i)

s,g′)

10 if α⃗ = ⊥ then continue
11 π ← π ∪ extractRules(α⃗, g′) // Alg. 2
12 s← succ(s, α⃗) // Eqn. (1) for plans
13 return π

Algorithm 2: Rule Extraction Routine
Input: Sequence of actions α⃗ and set of atoms g.
Output: MOOSE rules with precedence values π.

1 π ← ∅; s← g
2 for i = |α⃗| , . . . , 1 do
3 s← regr(s, α⃗i) // Eqn. (2)
4 r ← lift(s, g, α⃗[i:]) // Eqn. (4)
5 π ← π ∪ {(r, |α⃗| − i+ 1)}
6 return π

quantified actions and predicates. Lifting will be used in the
synthesis module to generate reusable rules.

Definition 8 (Lifting). Let s and g be finite sets of ground
atoms and α⃗ = a1, . . . , am a sequence of ground actions.
Then let o1, . . . , oq be the union of all objects from the atoms
and actions that are not in C. Next we define the set of free
variable terms var = {v1, . . . , vq} and lift each action and
atom by replacing each constant oi with its corresponding
free variable vi in var. We denote

lift(s, g, α⃗) = ⟨var, s′, g′, α⃗′⟩ (4)

where α⃗′ is the sequence of ground actions lifted by variables
in var, and similarly for s′ and g′ the sets of lifted atoms.

3.1 Synthesising MOOSE Programs
Algorithm 1 summaries the main MOOSE program synthesis
procedure. The input is a set of unlabelled training problems
and a number np representing the effort spent on extracting
information from a single problem. The main idea is that the
problem is relaxed by decoupling the goals and greedily solv-
ing them optimally and in order. Each resulting plan is used
to regress the corresponding singleton goal, and the regressed
goal and plan is then lifted into a lifted macro action rule.

The main algorithm gradually builds an empty rule set
(Line 1) by iterating over all training problems (Line 2) and
the specified number np of goal orderings (Line 4). For each
goal ordering and training problem, MOOSE finds plans via
an optimal planner (Line 9) with the singleton goals (Line 8)

Algorithm 3: MOOSE Program Instantiation
Input: A planning problem P and MOOSE program π.
Output: A plan α⃗ and success or failure status.

1 s← P[s0]
2 α⃗← [] // empty sequence
3 while P[g] ̸⊆ s do
4 β⃗ ← ⊥
5 for r ∈ π in ascending precedence values do
6 β⃗ ← grounding(r, s,P[g]) // Eqn. (3)
7 if β⃗ ̸= ⊥ then break
8 if β⃗ = ⊥ or detected cycle then return α⃗, failure

9 α⃗← α⃗; β⃗ // sequence concatenation

10 s← succ(s, β⃗)
11 return α⃗, success

in order (Line 7), while progressing the current state along the
way (Line 12). If a plan exists, then we extract rules from the
plan and add them to the incumbent plan (Line 11) as we will
describe in more detail in the next paragraph. Otherwise if no
plan exists, i.e. if the problem is unsolvable with the current
state and singleton goal pair, no rules are extracted and the
state is not progressed (Line 10).

Algorithm 2 describes how to extract lifted rules from a
plan trace and set of goal atoms. It begins by initialising the
to-be-regressed state s by the goal (Line 1). Next, it regresses
s in reverse order of the plan α⃗ (Lines 2 to 3) and then lifts
(Line 4) the corresponding regressed state s, goal g, and suffix
of the plan into a rule r. Then we compute the precedence
value of the rule to be the cost-to-go from the partial state s
to the goal g with respect to the input plan suffix and append
it to the incumbent plan (Line 5).

3.2 Satisficing Planning via Policy Execution
A learned MOOSE program can be used for satisficing plan-
ning by repeatedly choosing and executing a rule to progress
the initial state to a goal state. Algorithm 3 summaries the ex-
ecution procedure for an input planning problem and MOOSE
program. Summarily, each iteration of the algorithm’s main
loop queries the set of rules in order of ascending precedence
values until a rule associated with goals not yet achieved can
be grounded (Lines 5 to 7), from which the corresponding
macro action is added to the incumbent plan and applied to
the current state (Lines 9 to 10). The loop breaks once the
goal is reached (Line 3), no actions can be queried from the
set of rules, or a cycle is encountered (Line 8).

3.3 Optimal Planning via Action Pruning
Optimal planning can be performed via a synthesised MOOSE
program by extending the corresponding planning problem
with MOOSE rules. The rules, ignoring precedence values,
are encoded into PDDL axioms [Thiébaux et al., 2005] rep-
resenting search control for optimal planners that support ax-
ioms. Theorem 22 later formalises conditions under which
encodings of MOOSE programs preserve optimal solutions.

We now extend a given GP domain D = ⟨P, C,A⟩ with
a MOOSE program π. Firstly, we add predicates pg and
pgoalCond for each p ∈ P , representing goals in a planning



problem and goals that not been achieved in the state, respec-
tively. Then each state in a problem P is extended with atoms
pg(o⃗) for each goal atom p(o⃗) ∈ P[G] following Martı́n and
Geffner [2004]. For each predicate p we introduce the axiom

pgoalCond(x⃗)← pg(x⃗) ∧ ¬p(x⃗)
for computing unachieved goals. Secondly, for each action
schema a ∈ A we add a new predicate aπ to P and pre(a).
Then for each MOOSE rule ⟨x⃗, stateCond, goalCond, α⃗⟩, we
introduce an axiom
(α⃗1)π(x⃗)←

∧
p(y⃗)∈stateCond

p(y⃗) ∧
∧

p(y⃗)∈goalCond

pgoalCond(y⃗)

for restricting the application of an action with the MOOSE
rule condition. In this way, the axioms restrict the set of
applicable actions at any ground state to the first action of
each macro action that the MOOSE rules would generate, and
hence prune the entire search space. Differently to previous
works that prune the search space with lifted rules [Bacchus
and Kabanza, 2000; Yoon et al., 2008; Krajnanský et al.,
2014], our approach does not require writing new solvers but
making use of existing planners that support PDDL axioms.

4 Soundness and Completeness Conditions
In this section, we provide theoretical results concerning
the soundness and completeness of MOOSE programs for
both satisficing and optimal planning (Theorems 19 and 22).
Proofs of all statements are provided in Appendix B. The idea
is that under assumptions on the complexity of a GP problem
⟨D,P⟩ and given sufficient training problems, Algorithm 1
synthesises generalised plans that are sound and complete for
solving problems in P, and furthermore finds optimal plans
when MOOSE rules are used for search as described in Sec-
tion 3.3. We begin by classifying planning domains based on
the separability of goals, refining the class of Easy-to-Solve,
Hard-to-Optimise (ESHO) planning domains, the class of P-
time solvable and NP-hard to solve optimally domains.
Goal Independence Early works in planning worked un-
der the assumption that conjunctive goals can be split apart
into their individual components and achieved indepen-
dently. The Sussman [1973] anomaly illustrates a simple
Blocksworld example for how this was not true in general,
giving rise to algorithms which aim to achieve goals simul-
taneously [Waldinger, 1977] and to provably complete algo-
rithms in the current planning age. Regardless, most planning
domains are P-time solvable and furthermore exhibit goals
that can be achieved independently from one another. In this
section, we formalise two variants of goal independence (TGI
and SGI) and provide their computational complexity.
Definition 9 (True Goal Independence). A planning problem
P exhibits true goal independence (TGI) if for all orderings
g⃗ of goal atoms in P[g], the following greedy algorithm is
sound and complete: (1) set s = P[s0] and then (2) iterate
over goal atoms g⃗i in g⃗ in order by (2a) finding any optimal
plan α⃗(i) from s to a goal state containing g⃗i and (2b) pro-
gressing s via α⃗(i). We say that P exhibits polynomial TGI
(pTGI) if step (2a) can run in polynomial time. Lastly, we say
that P exhibits TGI with respect to C ∈ N, denoted TGIC , if
all optimal plans in step (2a) have plan length bounded by C.

Definition 10 (Sequential Goal Independence). A planning
problem P exhibits sequential goal independence (SGI) if
there exists an ordering g⃗ of goals P[g] such that the greedy
algorithm operating on g⃗ is sound and complete. Similarly,
we say that P exhibits polynomial SGI (pSGI) if step (2a) in
the greedy algorithm runs in polynomial time.

Next, we say that a GP problem GP = ⟨D,P⟩ exhibits
TGI if every problem in P exhibits TGI, and analogously for
SGI. We then let PLANSAT(GP) denote the computational
problem of deciding if a plan exists for a problem in P. The
following proposition shows that without the polynomial time
constraint of step (2a) of the aforementioned greedy algo-
rithm, TGI and SGI do not make planning any easier.

Proposition 11. PLANSAT(GP) of a GP problem GP ex-
hibiting TGI is PSPACE-complete.

Corollary 12. PLANSAT(GP) of a GP problem GP exhibit-
ing SGI is PSPACE-complete.

Once we add the polynomial time constraint of step (2a),
both pTGI and pSGI become easier. However, only pTGI
becomes tractable while pSGI becomes NP-complete.

Proposition 13. PLANSAT(GP) of a GP problem GP ex-
hibiting pTGI is in PTIME.

Corollary 14. Let C ∈ N. PLANSAT(GP) of a GP problem
GP exhibiting TGIC is in PTIME.

Proposition 15. PLANSAT(GP) of a GP problem GP ex-
hibiting pSGI is NP-complete.

Planning Problem Equivalence Before we state the as-
sumptions required for MOOSE to synthesise sound and com-
plete generalised plans, we define the notion of equivalence
for (lifted) problems. We define equivalence via bijection be-
tween objects, in contrast to work by Sievers et al. [2019]
which reduce problems to graph automorphisms.

Definition 16 (Equivalence Relation). Given a GP prob-
lem ⟨D,P⟩, we define a relation ∼U on planning problems
in P by P1 ∼U P2 if there exists a bijective mapping
f : P1[O] → P2[O] such that f(c) = c for c ∈ C,
F (P1[s0]) = P2[s0] and F (P1[g]) = P2[g] where F (s) :=
{p(f(o1), . . . , f(on)) | p(o1, . . . , on) ∈ s}.

Indeed the defined relation is an equivalence relation and
furthermore defines a natural notion of equivalence for plan-
ning problems, where reflexivity, symmetry and transitivity
follows from bijective functions in the definition of ∼U .

Proposition 17. The relation ∼U on planning problems of
any given GP problem is an equivalence relation.

Proposition 18. Suppose P1 ∼U P2 and let f : P1[O] →
P2[O] be the bijective mapping satisfying the definition of
∼U . Then a sequence of actions a1, . . . , an is a plan for P1

if and only if a′1, . . . , a
′
n is a plan for P2, where a′i is defined

by a′i = a(f(o1), . . . , f(on)) if ai = a(o1, . . . , on) for some
a ∈ A and o1, . . . , on ∈ P1[O].
Soundness and Completeness of MOOSE Now we state
and prove the main theorems of the section. The main idea of
the statement is that given enough training data MOOSE can
construct a database of rules for TGIC problems which can



solve all possible problems with singleton goals. By assum-
ing a bound in the definition of TGIC of plan lengths, this
database has a finite size.
Theorem 19 (MOOSE is sound and complete for PLANSAT).
Let GP = ⟨D,P⟩ be a GP problem exhibiting TGIC . There
exists a set of training problems Ptrain where Algorithm 3 us-
ing the plan Π synthesised from Algorithm 1 with Ptrain is
sound and complete for P for satisficing planning.

The bound on the size of training problems in the proof of
Theorem 19 is exponential in the domain size. This bound
may be tight and unavoidable given that it has been shown
that GP under the QNP [Srivastava et al., 2011b] framework
is provably equivalent to FOND planning [Bonet and Geffner,
2020] which is known to be EXPTIME-complete. A fruit-
ful next step is to develop a sound and complete learning al-
gorithm to learns to generate and select what training data
is required, possibly given implicitly in the input GP prob-
lem [Srivastava et al., 2011a; Grundke et al., 2024].

To prove optimality we require an additional assumption
which we see is no harder than SGI.
Definition 20 (Optimal Goal Independence). A planning
problem exhibits Optimal Goal Independence (OGI) if there
exists an ordering g⃗ of goals P[g] such that the algorithm de-
scribed in Definition 9 is optimally sound and complete with
the change that it is now nondeterministic and step (2a’) is
changed to “guess an optimal plan α⃗(i) such that the concate-
nation of plans is optimal”.
Proposition 21. Let GP = ⟨D,P⟩ be a GP problem exhibit-
ing OGI. The computational problem PLANOPT(GP) of de-
ciding if there exists a plan for any problem in P with length
less than an input k is NP-complete.

Now we state the main theorem for optimal planning. We
also provide a counterexample to the theorem for when the
OGI assumption is dropped in Example 1 in the Appendix.
Theorem 22 (MOOSE is sound and complete for PLANOPT).
Let GP = ⟨D,P⟩ be a GP problem exhibiting TGIC and
OGI. There exists a set of training problems Ptrain where an
optimal planner run on the transformation in Section 3.3 via
the generalised plan Π learned from Algorithm 1 with Ptrain
is sound and complete for P for optimal planning.

5 Experiments
In this section we aim to understand how MOOSE places in
performance in comparison to state-of-the-art planners. We
first describe the experimental setup as follows.
Implementation We implement MOOSE from scratch in
Python, but make use of the following tools: the pddl [Fa-
vorito et al., 2025] parser for parsing PDDL problems; the
SQLite [Hipp, 2020] database system for grounding in Al-
gorithm 3 as planning states can be viewed as databases and
rules as queries [Corrêa et al., 2020; Corrêa and De Gia-
como, 2024]; (NUMERIC) FAST DOWNWARD’s implemen-
tation of A∗ with the (Numeric) LM-cut heuristic [Helmert
and Domshlak, 2009; Kuroiwa et al., 2022] for generat-
ing (numeric) optimal plans in Line 9 of Algorithm 1; and
SYMK [Speck et al., 2019; Speck et al., 2025] for optimal
planning with MOOSE as described in Section 3.3.

Additional Extensions We introduce an optimisation for
generalised plan instantiation which tries to fire the previous
successfully fired rule first during Line 9 of Algorithm 3. Fur-
thermore, we introduce a validation and refinement procedure
for handling domains which do not exhibit the TGIC assump-
tion in Appendix C. We also extend our approach to handle
numeric planning problems formalised in Appendix A.

Benchmarks For classical planning, we make use of the
training and testing problems of the 2023 International Plan-
ning Competition (IPC) [Taitler et al., 2024] Learning Track
for the Childsnack, Ferry, Miconic, Rover, Satellite and
Transport domains, and also introduce new training and test-
ing problems for the Barman and Logistics domains. For
numeric planning, we make use of the training and testing
problems from benchmarks by [Chen and Thiébaux, 2024a]
for Childsnack, Ferry, Miconic, and Transport, and introduce
new problems for the PDDL Minecraft domain [Benyamin et
al., 2024], as well as a new planning domain ‘Adultsnack’
which extends Childsnack to an arbitrary number of dietary
restrictions. We modified Rover and Transport to remove
their path-finding component. All domains are ESHO, P-time
to solve but NP-hard to solve optimally, with the exception
of Adultsnack and Childsnack which are also P-time to solve
optimally. Detailed distributions of training and testing prob-
lem object sizes are provided in Appendix D.

Baselines For classical planning, we compare against
LAMA [Richter and Westphal, 2010], the state-of-the-art stan-
dalone satisficing planner in the 2023 IPC Learning Track,
and the sketch learner (SLEARN) [Drexler et al., 2022]
with width in {0, 1, 2}. In our results, we take the best
SLEARN configuration for every problem. For numeric plan-
ning, we compare against the multi-queue (M(3h∥3n)) [Chen
and Thiébaux, 2024b] and the multi-repetition relaxed plan
heuristic with jumping actions (MRP+HJ) [Scala et al., 2020]
configurations of ENHSP. For optimal planning, we compare
against blind A∗ search, A∗ search with the LM-cut heuris-
tic, SCORPION [Seipp et al., 2020], the state-of-the-art stan-
dalone optimal planner according to the 2023 IPC Optimal
Track, and SYMK [Speck et al., 2025].

Resources For synthesis, satisficing, and optimal planning,
we gave MOOSE and all baselines an 8GB memory and 1800s
runtime limit, and ran them on a cluster with Intel Xeon Plat-
inum 8274 CPUs (3.20GHz). An exception is that SLEARN
was given more compute for synthesis (32GB memory and
12 hours for each width configuration). For all experiments,
we set the only hyperparameter in the MOOSE learning pro-
cedure in Algorithm 1 to be np = 3.

Results We first note that MOOSE completed synthesis in
the given synthesis budgets while SLEARN failed to learn
domain knowledge for 3 domains despite having access to
substantially more compute and multiple configurations. Fig-
ure 3 summarises synthesis metrics and planner performance
and we refer to Appendix E for more detailed results.

Satisficing Numeric Planning MOOSE solves all 540 nu-
meric testing problems. Figure 3 shows that each problem is
solved in under 100 seconds. In comparison, state-of-the-art,
numeric planners solve fewer than two thirds of the bench-
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Figure 3: Left: synthesis time and memory usage (↓) of MOOSE and SLEARN. We present the lowest synthesis metrics over multiple SLEARN
configurations, while MOOSE has only a single configuration. Cells marked − indicate that synthesis failed with the given budgets. Right:
cumulative coverage (↑) of planners over time for various planning settings. The dotted black line indicates the total number of problems.

mark problems with the 1800s limit. MOOSE achieves the
highest quality plans for Adultsnack and Childsnack, while
plan quality is similar to the baselines for all other domains.
Satisficing Classical Planning MOOSE solves 719 out of
720 classical testing problems, outperforming all tested base-
lines. The generalised planner SLEARN manages to learn do-
main knowledge for 5 out of 8 domains but only solves all
problems from one domain (Miconic). From Figure 27 in the
Appendix, MOOSE has better/worse plans than LAMA on 5/3
domains (Barman, Childsnack, Ferry, Rover and Transport)/
(Logistics, Miconic and Satellite). The single failure was due
to the rules not returning an action for a (rare) Logistics state
not captured in the training or elsewhere in the testing set.
However, when rules are queried in descending instead of as-
cending order of precedence values in Line 5 of Algorithm 3,
the state is avoided and this problem is solved.
Optimal Classical Planning MOOSE solves 175 out of 240
classical testing problems optimally. MOOSE achieves the
best (tied) performance for 5 domains out of 8, while the next
best optimal planner, Scorpion, achieves the best (tied) per-
formance for 4 domains. We also note that MOOSE matches
or outperforms the base planner SYMK on all domains. This
fact suggests that the reduction in search space from encod-
ing learned policies via axioms outweighs the cost of eval-
uating such axioms. Although it is not guaranteed that the
transformation from policies learned from finite training data
preserves optimality, the plans output by MOOSE are empiri-
cally optimal in comparison to plans output by other optimal
planners. We also note that MOOSE learns provably optimal
policies for Num-Adultsnack and (Num-)Childsnack.

6 Related Work
Gretton and Thiébaux [2004] employed regression rewriting
for GP in the context of lifted MDPs. Lifted regression was
used to generate relevant features for building decision-tree
policies via inductive logic programming. Their approach
handles optimal, probabilistic planning although the horizons
of testing problems were bounded by those seen in the train-
ing set. LOOM [Illanes and McIlraith, 2019] is the work
that is most closely related to MOOSE theory-wise. LOOM
automatically synthesises an abstraction from a single plan-
ning problem of a GP problem via bagging equivalent ob-
jects [Fuentetaja and de la Rosa, 2016; Riddle et al., 2016;
Dong et al., 2025] into a nondeterministic, quantified prob-
lem. The quantified problem is then solved with an extension

of the PRP planner [Muise et al., 2012] to synthesise general-
isable policies via regression which satisfy a policy termina-
tion test [Srivastava et al., 2011b]. MOOSE takes inspiration
from the powerful regression rewriting technique employed
in these works, but differs in the methodology. MOOSE takes
a bottom-up approach of performing ground regression from
example plans to generate ground condition-action pairs that
are then lifted into rules. Gretton and Thiébaux takes a top-
down approach of performing lifted regression to generate
relevant lifted features, and LOOM uses ground regression
on a top-down abstraction of the GP problem for synthesising
generalised policies. Furthermore, MOOSE implicitly gen-
eralises over goals expressed by Skolem functions, whereas
LOOM is restricted to Skolem constants (nullary Skolem
functions) due to the dependency on bagging.

More generally, MOOSE lies in the class of generalised
planners that synthesise generalised plans by sampling from
training problems. Examples of recent work includes
PG3 [Yang et al., 2022] which performs heuristic search over
a space of generalised policies [Segovia-Aguas et al., 2021;
Segovia-Aguas et al., 2024] and also uses goal regression for
handling ‘missed’ states. Toyer et al. [2018; 2020] introduced
ASNets, the first deep learning approach for GP, which learns
generalised policies with graph neural networks and training
data. Chen et al. [2024] introduced WL-GOOSE which syn-
thesised generalised plans as heuristic functions via statistical
graph learning. Silver et al. [2024] employed language mod-
els for synthesising Python code as generalised plans. Celor-
rio et al. [2019] surveys more prior GP work which synthesise
generalised plans from training problems.

7 Conclusion
We introduce a new generalised planner, MOOSE, for both
satisficing and optimal planning based on the KRR con-
cept of goal regression. We formally classify and define the
classes of planning domains and problems for which MOOSE
is sound and complete. Experimental results show that our
approach significantly advances the state of the art for clas-
sical, numeric, and optimal (generalised) planning for a sub-
stantial class of planning domains. MOOSE is also memory
efficient for both generalised plan synthesis and instantiation,
taking less than 1GB of memory to perform synthesis and in-
stantiation across all experiments. Future work involves han-
dling domains requiring transitive closure computations and
assumptions weaker than those introduced in the our theory.
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Thiébaux. Graph learning for numeric planning. In
NeurIPS, 2024.
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Torralba. Symbolic search for cost-optimal planning
with expressive model extensions. J. Artif. Intell. Res.,
82:1349–1405, 2025.

[Srivastava et al., 2008] Siddharth Srivastava, Neil Immer-
man, and Shlomo Zilberstein. Learning generalized plans
using abstract counting. In AAAI, 2008.

[Srivastava et al., 2011a] Siddharth Srivastava, Neil Immer-
man, and Shlomo Zilberstein. A new representation and
associated algorithms for generalized planning. Artif. In-
tell., 175(2):615–647, 2011.

[Srivastava et al., 2011b] Siddharth Srivastava, Shlomo Zil-
berstein, Neil Immerman, and Hector Geffner. Qualitative
numeric planning. In AAAI, 2011.

[Sussman, 1973] Gerald Jay Sussman. A Computational
Model of Skill Acquisition. PhD thesis, MIT, 1973.

[Taitler et al., 2024] Ayal Taitler, Ron Alford, Joan Espasa,
Gregor Behnke, Daniel Fiser, Michael Gimelfarb, Flo-
rian Pommerening, Scott Sanner, Enrico Scala, Do-
minik Schreiber, Javier Segovia-Aguas, and Jendrik Seipp.
The 2023 international planning competition. AI Mag.,
45:280–296, 2024.
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A Numeric Planning Definitions
We can extend the definition of a planning problem in Definition 2 to handle numeric variables, numeric conditions and numeric
effects by making use of the fragment of PDDL 2.1 [Fox and Long, 2003] excluding durative actions. In this paper, we consider
the fragment of numeric planning where numeric conditions are restricted to involve one numeric variable per formula with
comparisons in {≥, >,=}, and numeric action effects to additions by a constant value. This fragment is very expressive as it is
undecidable by reduction from an abacus program [Helmert, 2002, Theorem 12].
Definition 23 (Abacus Program Numeric Planning Problem). A (lifted) numeric planning problem is a tuple Π =
⟨P,F ,O,A, s0, g⟩ where P is a set of lifted predicates, F is a set of lifted (numeric) functions, O is a set of objects, A is
a set of action schemata, s0 is the initial state, and g the goal condition. Predicates are defined as in Definition 2 and functions
are similar where each function f ∈ F has a set of argument terms x1, . . . , xnf

where nf ∈ N0 depends on f . A propositional
variable is a predicate whose argument terms are all instantiated with objects, and has a range in {⊤,⊥}. A numeric variable
is a function whose argument terms are all instantiated with objects, and has a range in R. We let Np/Nn denote the set of
propositional/numeric variables for Π given by all possible instantiations of predicates/functions. A state is a value assignment
to all Np and Nn.

A literal is a predicate p or its negation ¬p. A propositional condition is a positive (resp. negative) literal x = ⊤ (resp. ⊥),
and a numeric condition has the form f ⊵ c where f is a function, c ∈ R and ⊵ ∈ {≥, >,=}. A state s satisfies a set of
conditions (i.e. a set of propositional and numeric conditions) if each condition in the set evaluates to true given the values of
the state variables in s. The goal g is a set of conditions.

An action schema a ∈ A is a tuple ⟨var(a), pre(a), add(a), del(a), num eff(a)⟩ where var(a) is a set of parameter terms,
the preconditions pre(a) is a set of conditions, add(a) and del(a) are add and delete lists of predicates as in the classical case,
num eff(a) is a set of numeric conditions of the form f(x1, . . . , xnf

) = f(x1, . . . , xnf
) + c for c ∈ R with argument terms

instantiated with terms or objects from var(a) ∪ O. An action a is applicable in a state s if s satisfies pre(a). In this case,
its successor succ(s, a) is the state where the effects num eff(a) are applied to the numeric variables in s, and propositional
variables are modified in the same way as in the classical case. If a is not applicable in s, we have succ(s, a) = ⊥. The
definition of plan is the same as in the classical case.

Next, we extend the definition of logical regression for classical planning in Definition 3 to handle numeric conditions and
effects for the class of abacus program numeric problems.
Definition 24 (Abacus Program Numeric Planning Regression). A set of conditions g is regressable over an action a if the
classical conditions are regressable over a as in Definition 3, with no restriction for numeric conditions. In this case, we define
the regression of g under a by transforming numeric conditions f⊵c to f⊵c−v if there is an effect of a of the form f = f+v,
and if there exists any precondition ξ = (f ⊵ c) in a, the associated numeric condition corresponding to f in g is transformed
to ξ.



B Proofs for Section 4
Proof Sketch for Proposition 11. Membership follows from PSPACE-completeness of planning for fixed domains [Bylander,
1994; Erol et al., 1995], and hardness by reduction from the Rush Hour problem which has singleton goals and has been shown
to be PSPACE-hard [Hearn and Demaine, 2005].

Proof Sketch for Corollary 12. Membership again follows from PSPACE-completeness of planning for fixed domains. Hard-
ness follows from Proposition 11 as TGI is a special case of SGI.

Proof Sketch for Proposition 13. This follows by noting that the greedy algorithm described in the definition of TGI runs in
polynomial time under the assumption that step (2a) can run in polynomial time.

Proof Sketch for Corollary 14. TGIC of a GP problem implies pTGI as optimal search in step (2a) of the greedy TGI algorithm
runs in polynomial time with exponent C but C is a constant.

Proof Sketch for Proposition 15. For NP membership, one guesses the correct ordering of goals after which running the greedy
algorithm is in polynomial time. For NP-hardness, we reduce from the Hamiltonian path problem which is NP-complete [Garey
and Johnson, 1979, p. 60]. The Hamiltonian path problem asks to find a path on a graph that visits every vertex exactly once.
To encode this as a planning domain, one would require goals of the form visited(x) and actions which traverse a graph but
make each vertex untraversable once it has been visited, such as by deleting initially true clear(x) atoms. Then the Hamiltonian
path problem is equivalent to finding an correct ordering of goals representing (adjacent) vertices to visit.

Proof Sketch for Proposition 17. Reflexivity, symmetry and transitivity follows from the usage of bijective functions in the
definition of ∼U .

Proof Sketch for Proposition 18. The statement follows by definitions and bijectiveness of f .

Proof Sketch for Theorem 19. Let GP = ⟨D,P⟩ be a GP problem exhibiting TGIC as in the statement assumption, with bound
C ∈ N from Definition 9. To show completeness, it suffices to prove that there exists a finite number of MOOSE rules π,
representing all possible optimal plans for singleton goals in step (2a) of the definition of TGI in Definition 9, which when
executed with Algorithm 3 can solve any problem in GP with singleton goals. Then by the TGI assumption, any arbitrary
problem P in P can be solved because execution of π would achieve the goals P[g] in a monotonic fashion. Soundness follows
by the fact that application of rules lifted from regression are sound and thus, the execution of Algorithm 3 is sound.

Now, note that the set of possible singleton goals in GP is finite modulo the equivalence relation ∼U restricted to sets
of atoms, as there are a finite number of predicates and instantiations of nonequivalent objects. Furthermore by the TGIC
assumption any optimal plan for any possible singleton goal g has plan length less than C. Thus the set of all possibles
sequences of actions that can be regressed from g is bounded by

∑C
k=0(|A| · (kN ′ +M ′)N )k where

• N = maxa∈A(|var(a)|) is the maximum arity of schemata,

• M is the maximum arity of predicates,

• N ′ = N + |C|, and

• M ′ = M + |C|.
Note that by Proposition 18, it suffices to count the equivalence class of plans under ∼U . This is because modulo ∼U there
are at most (kN ′ +M ′)N possible instantiations of an action where there are at most kN ′ + M ′ possible objects across all
actions in a length-k plan and the singleton goal under ∼U . By a similar argument, there are |P| ·M ′M possible singleton goal
instantiations, and hence it takes a finite number of up to n =

∑C
k=0(|A| · (kN ′ +M ′)N )k · (|P| ·M ′M ) different problems to

synthesise a general policy for GP.

Proof Sketch for Proposition 21. NP membership follows by definition of OGI, more specifically the nondeterministic algo-
rithm defined within. NP-hardness follows by the NP-hardness of SGI which can be viewed as a general case of OGI.

Proof Sketch for Theorem 22. Completeness follows from the completeness of rules as discussed in Theorem 19. To show
soundness for optimal planning, we note that given enough training problems, bounded by n =

∑C
k=0(|A| · (kN ′ +M ′)N )k ·

(|P| ·M ′M ) from the previous theorem, learned rules do not throw away any optimal actions at every state. Then the proof
follows from the definition of OGI.

Example 1 (Theorem 22 counterexample without the OGI assumption). A counterexample to the previous theorem for when
the OGI assumption is dropped occurs if we can find a case where achieving a singleton goal for a TGI problem suboptimally
is necessary to achieve optimality for the whole problem. In the planning problem illustrated by the state space in Figure 4 with
goal {g1, g2}, an optimal plan to either g1 or g2 has plan length 2 and the greedy algorithm in Definition 9 of TGI returns a
plan of length 4. However, the optimal plan has length 3.



g1

g2

g1, g2g1, g2

Figure 4: A planning problem illustrating the necessity of the OGI assumption for learning provably optimal policies in Theorem 22.

Algorithm 4: Validation and Refinement Routine

Input: MOOSE program π, and training problems Ptrain = P(1), . . . ,P(nt).
Output: MOOSE program π and execution mode for π.

1 execution ← greedy
2 do
3 for i = 1, . . . , nt do
4 α⃗, status ← exec(P(i), π) // Alg. 3
5 if status = success then continue
6 if reason for failure = π caused a deadend then
7 r ← rule that caused the deadend
8 π.r.precedence← π.r.precedence + (0, 1)
9 execution ← conservative

10 else if reason for failure = π ran into a cycle then
11 r ← last executed rule
12 π.r.precedence← π.r.precedence + (−1, 1)
13 execution ← conservative
14 else if reason for failure = π derived no rule then
15 π ← π ∪ learn({P(i)

succ(P(i)[s0],α⃗)
})

16 while π has changed
17 return π, execution

C Validation and Refinement of MOOSE Rules
It may be the case that MOOSE generates rules successfully in Algorithm 1 but does not solve problems from a domain if it
does not exhibit the TGI assumption, i.e. if there exists an ordering of goals that must not be ignored. In order to handle such
cases, we introduce a validation and refinement procedure for the synthesis of MOOSE programs, as well as different execution
modes for MOOSE programs. First, we modify the type of the precedence ranking function from R → N to R → N × N.
Line 5 in Algorithm 2 is then changed to π ← π ∪ {(r, (|α⃗| − i+ 1, 1))}.

Now, the execution of a MOOSE program π may fail due to a number of reasons. The validation and refinement procedure dis-
played in Algorithm 4 aims to resolve some failures by iterating over all training problems and trying to execute the generalised
plan (Line 4) and checking for success (Line 5). If the generalised plan fails, it is caused by one of the following reasons: the
generalised plan caused a deadend, in which case the precedence of the rule which caused the deadend is lowered (Line 8); the
generalised plan ran into a cycle, in which case the rule which caused the cycle is strictly lowered (Line 12); or the generalised
plan has not encountered a solvable state before, in which case learning is done on the new state (Line 15). In the former two
cases, the generalised plan is switched to a ‘conservative mode’ as it has learned that some actions are dangerous if executed
greedily. Otherwise, the generalised plan is kept in a ‘greedy mode’ which means that it uses Algorithm 3 for instantiation.
Although the generalised plan is not always guaranteed to stabilise, it does so for all domains used in the experiments.

Algorithm 5 shows how one instantiates a MOOSE program when the synthesis procedure has determined that the plan be
executed in a conservative mode. The algorithm is equivalent to Algorithm 3 with two additions highlighted in blue. Rules
are now queried in order of descending precedence values (Line 5) and furthermore, only the first action of each rule head is
executed (Line 9).



Algorithm 5: MOOSE Conservative Plan Instantiation
Input: A planning problem P and MOOSE program π.
Output: A plan α⃗ and success or failure status.

1 s← P[s0]
2 α⃗← [] // empty sequence
3 while P[g] ̸⊆ s do
4 β⃗ ← ⊥
5 for r ∈ π in descending precedence values do
6 β⃗ ← grounding(r, s,P[g]) // Eqn. (3)
7 if β⃗ ̸= ⊥ then break
8 if β⃗ = ⊥ or detected cycle then return α⃗, failure

9 β⃗ ← [β⃗0]

10 α⃗← α⃗; β⃗ // sequence concatenation

11 s← succ(s, β⃗)
12 return α⃗, success



D Training and Testing Task Size Distributions
D.1 Classical Planning

Train Test
Domain Object Types Min Max Min Max

Barman Σ 16 27 21 853

cocktail 3 7 4 393
dispenser 3 3 3 30
hand 2 2 2 2
ingredient 3 3 3 30
level 3 3 3 3
shaker 1 1 1 1
shot 1 8 5 394

Childsnack Σ 6 32 20 1326

bread-portion 1 6 4 292
child 1 6 4 292
content-portion 1 6 4 292
place 1 3 3 3
sandwich 1 9 4 437
tray 1 2 1 10

Ferry Σ 3 8 7 1461

car 1 2 2 974
location 2 6 5 487

Logistics Σ 29 29 10 1260

airplane 3 3 1 64
city 3 3 1 64
location 15 15 2 960
package 5 5 5 108
truck 3 3 1 64

Miconic Σ 3 11 5 681

floor 2 7 4 196
passenger 1 4 1 485

Rover Σ 10 36 12 596

camera 1 4 1 99
lander 1 1 1 1
mode 3 3 3 3
objective 1 10 1 236
rover 1 4 1 30
store 1 4 1 30
waypoint 2 10 4 197

Satellite Σ 5 43 11 402

direction 2 10 4 98
instrument 1 20 3 195
mode 1 3 1 10
satellite 1 10 3 99

Transport Σ 6 17 12 354

location 2 7 5 99
package 1 4 1 194
size 2 3 3 11
vehicle 1 3 3 50

Table 1: Object distribution of training and testing splits for classical planning.



D.2 Numeric Planning

Train Test
Domain Objects Min Max Min Max

Num-adultsnack Σ 8 39 43 2644

at kitchen bread 1 10 12 876
at kitchen content 1 10 12 876
food 3 3 3 3
hungry 1 10 12 876
place 1 3 3 3
tray 1 3 1 10

Num-childsnack Σ 5 10 16 889

at kitchen bread 1 2 4 292
at kitchen content 1 2 4 292
hungry 1 2 4 292
place 1 2 3 3
tray 1 2 1 10

Num-ferry Σ 7 9 11 1465

car 1 2 2 974
ferry-capacity 4 4 4 4
location 2 3 5 487

Num-miconic Σ 7 15 9 685

floor 2 7 4 196
lift-capacity 4 4 4 4
passenger 1 4 1 485

Num-minecraft Σ 5 5 15 2100

cell 4 4 11 1800
pogo sticks to make 1 1 4 300

Num-transport Σ 5 14 13 605

capacity 1 4 4 262
location 2 4 5 99
package 1 4 1 194
vehicle 1 2 3 50

Table 2: Object distribution of training and testing splits for numeric planning.



E Additional Experimental Results
E.1 Coverage Tables

Domain M
(3
h
∥3

n
)

M
R

P
+

H
J

M
O

O
S

E

Num-Adultsnack 32 23 90
Num-Childsnack 64 49 90
Num-Ferry 60 61 90
Num-Miconic 63 71 90
Num-Minecraft 30 68 90
Num-Transport 45 64 90∑

(540) 294 336 540

Domain L
A

M
A

S
L

E
A

R
N

-0

S
L

E
A

R
N

-1

S
L

E
A

R
N

-2

M
O

O
S

E

Barman 49 0 0 0 90
Childsnack 35 0 66 0 90
Ferry 69 67 67 60 90
Logistics 77 0 0 0 89
Miconic 90 90 90 90 90
Rovers 66 0 0 0 90
Satellite 89 0 47 48 90
Transport 66 0 63 46 90∑

(720) 541 157 333 244 719

Domain B
lin

d

L
M

C
U

T

S
C

O
R

P
IO

N

S
Y

M
K

M
O

O
S

E

Barman 0 0 0 12 26
Childsnack 9 9 9 15 17
Ferry 10 18 17 18 30
Logistics 8 15 22 10 16
Miconic 30 30 30 30 30
Rovers 15 17 18 20 20
Satellite 12 22 26 21 21
Transport 9 9 20 13 15∑

(240) 93 120 142 139 175

Table 3: Planning coverage for satisficing numeric planning (left), satisficing classical planning (middle), and optimal classical planning
(right). Domains have 90/30 problems each for SAT/OPT planning.

E.2 Satisficing Numeric Planning
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Figure 5: Line plots for time in seconds (left) and plan length (right) of planners across solved problems for Numeric Adultsnack. Planning
problem difficulty increases across the x-axis, and lower y-axis values are better (↓). Note the log scale of the y-axis for runtime and plan
length.
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Figure 6: Line plots for time in seconds (left) and plan length (right) of planners across solved problems for Numeric Childsnack. Planning
problem difficulty increases across the x-axis, and lower y-axis values are better (↓). Note the log scale of the y-axis for runtime and plan
length.
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Figure 7: Line plots for time in seconds (left) and plan length (right) of planners across solved problems for Numeric Ferry. Planning
problem difficulty increases across the x-axis, and lower y-axis values are better (↓). Note the log scale of the y-axis for runtime and plan
length.
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Figure 8: Line plots for time in seconds (left) and plan length (right) of planners across solved problems for Numeric Miconic. Planning
problem difficulty increases across the x-axis, and lower y-axis values are better (↓). Note the log scale of the y-axis for runtime and plan
length.
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Figure 9: Line plots for time in seconds (left) and plan length (right) of planners across solved problems for Numeric Minecraft. Planning
problem difficulty increases across the x-axis, and lower y-axis values are better (↓). Note the log scale of the y-axis for runtime and plan
length.
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Figure 10: Line plots for time in seconds (left) and plan length (right) of planners across solved problems for Numeric Transport. Planning
problem difficulty increases across the x-axis, and lower y-axis values are better (↓). Note the log scale of the y-axis for runtime and plan
length.



E.3 Satisficing Classical Planning
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Figure 11: Line plots for time in seconds (left) and plan length (right) of planners across solved problems for Barman. Planning problem
difficulty increases across the x-axis, and lower y-axis values are better (↓). Note the log scale of the y-axis for runtime and plan length.
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Figure 12: Line plots for time in seconds (left) and plan length (right) of planners across solved problems for Childsnack. Planning problem
difficulty increases across the x-axis, and lower y-axis values are better (↓). Note the log scale of the y-axis for runtime and plan length.
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Figure 13: Line plots for time in seconds (left) and plan length (right) of planners across solved problems for Ferry. Planning problem
difficulty increases across the x-axis, and lower y-axis values are better (↓). Note the log scale of the y-axis for runtime and plan length.
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Figure 14: Line plots for time in seconds (left) and plan length (right) of planners across solved problems for Logistics. Planning problem
difficulty increases across the x-axis, and lower y-axis values are better (↓). Note the log scale of the y-axis for runtime and plan length.
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Figure 15: Line plots for time in seconds (left) and plan length (right) of planners across solved problems for Miconic. Planning problem
difficulty increases across the x-axis, and lower y-axis values are better (↓). Note the log scale of the y-axis for runtime and plan length.
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Figure 16: Line plots for time in seconds (left) and plan length (right) of planners across solved problems for Rover. Planning problem
difficulty increases across the x-axis, and lower y-axis values are better (↓). Note the log scale of the y-axis for runtime and plan length.
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Figure 17: Line plots for time in seconds (left) and plan length (right) of planners across solved problems for Satellite. Planning problem
difficulty increases across the x-axis, and lower y-axis values are better (↓). Note the log scale of the y-axis for runtime and plan length.
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Figure 18: Line plots for time in seconds (left) and plan length (right) of planners across solved problems for Transport. Planning problem
difficulty increases across the x-axis, and lower y-axis values are better (↓). Note the log scale of the y-axis for runtime and plan length.



E.4 Optimal Classical Planning
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Figure 19: Line plots for time in seconds (left) and plan length (right) of planners across solved problems for Barman. Planning problem
difficulty increases across the x-axis, and lower y-axis values are better (↓). Note the log scale of the y-axis for runtime.
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Figure 20: Line plots for time in seconds (left) and plan length (right) of planners across solved problems for Childsnack. Planning problem
difficulty increases across the x-axis, and lower y-axis values are better (↓). Note the log scale of the y-axis for runtime.
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Figure 21: Line plots for time in seconds (left) and plan length (right) of planners across solved problems for Ferry. Planning problem
difficulty increases across the x-axis, and lower y-axis values are better (↓). Note the log scale of the y-axis for runtime.
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Figure 22: Line plots for time in seconds (left) and plan length (right) of planners across solved problems for Logistics. Planning problem
difficulty increases across the x-axis, and lower y-axis values are better (↓). Note the log scale of the y-axis for runtime.
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Figure 23: Line plots for time in seconds (left) and plan length (right) of planners across solved problems for Miconic. Planning problem
difficulty increases across the x-axis, and lower y-axis values are better (↓). Note the log scale of the y-axis for runtime.
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Figure 24: Line plots for time in seconds (left) and plan length (right) of planners across solved problems for Rover. Planning problem
difficulty increases across the x-axis, and lower y-axis values are better (↓). Note the log scale of the y-axis for runtime.
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Figure 25: Line plots for time in seconds (left) and plan length (right) of planners across solved problems for Satellite. Planning problem
difficulty increases across the x-axis, and lower y-axis values are better (↓). Note the log scale of the y-axis for runtime.
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Figure 26: Line plots for time in seconds (left) and plan length (right) of planners across solved problems for Transport. Planning problem
difficulty increases across the x-axis, and lower y-axis values are better (↓). Note the log scale of the y-axis for runtime.



E.5 MOOSE vs. LAMA on Plan Quality
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Figure 27: Plot comparisons of expanded nodes of LAMA (y-axis) and MOOSE (x-axis) for different classical planning domains. A point
(x, y) represents the metric of the models indicated on the x and y axis on the domain. The number in the brackets next to each model
indicates how many planning problems the model returned a higher quality plan than the model on the other axis. Points on the top left (resp.
bottom right) triangle favour MOOSE (resp. LAMA).
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